
An Adaptive Cartesian Grid Embedded

Boundary Method for the Incompressible

Navier Stokes Equations in Complex

Geometry

B. van Straalen, D. Trebotich, T. Ligocki, D.T. Graves,
P. Colella, M.F. Barad

Lawrence Berkeley National Laboratory, Berkeley, CA

Abstract

We present a second-order accurate projection method to solve the incompress-
ible Navier-Stokes equations on irregular domains in two and three dimensions.
We use a finite-volume discretization obtained from intersecting the irregular do-
main boundary with a Cartesian grid. We address the small-cell stability problem
associated with such methods by hybridizing a conservative discretization of the
advective terms with a stable, nonconservative discretization at irregular control
volumes, and redistributing the difference to nearby cells. Our projection is based
upon a finite-volume discretization of Poisson’s equation. We use a second-order,
L∞-stable algorithm to advance in time. Block structured local refinement is applied
in space. The resulting method is second-order accurate in L1 for smooth problems.
We demonstrate the method on benchmark problems for flow past a cylinder in 2D
and a sphere in 3D as well as flows in 3D geometries obtained from image data.

Key words: incompressible flow, embedded boundary methods, complex
geometry, projection method

1 Research supported at the Lawrence Berkeley National Laboratory by the U.S. De-
partment of Energy: Director, Office of Science, Office of Advanced Scientific Computing,
Mathematical, Information, and Computing Sciences Division under Contract DE-AC02-
05CH11231.

Preprint submitted to Elsevier Science 28 October 2015

1 Introduction

1.1 Governing Equations

We are solving the constant-density, incompressible Navier-Stokes equations for ve-
locity ~u, normalized pressure p with a kinematic viscosity of ν over a domain Ω. These
equations are given by

∂~u
∂t

+ ~u · ∇~u = −∇p + ν∆~u

∇ · ~u = 0

~u · n̂ = f(~x) on ∂Ω

(1)

We transform this constrained system of equations into an initial value problem by
using the Hodge decomposition. Any vector field ~w on a bounded domain Λ where

∫

∂Λ

~w · n̂ dA = 0 (2)

can be uniquely decomposed into two orthogonal vector fields, one divergence-free
and the other the gradient of a scalar.

~w = ~wd +∇φ

∇ · wd = 0 on Λ,

∂φ

∂n
= ~w · n̂ on ∂Λ

(3)

It is convenient to express this process in operator form. The projection operator P is
defined as that operator that extracts the divergence-free part of a vector field, while
Q extracts the gradient:

P~w = ~wd

P ≡ (I −∇(∆−1)∇·)
Q ≡ (∇(∆−1)∇·)

(4)

To represent complex geometries, we use a finite volume discretization defined by
the intersection of the irregular domain with a rectangular grid. Primary dependent
variables are descretized at Cartesian cell centers. There are several advantages to
this approach. Three-dimensional grid generation is tractable with embedded bound-
ary methods. Away from the irregular boundary, the discretization reduces to well-
understood regular-grid methods. Elliptic solvers are tractable with this discretization
since geometric multigrid works well in this setting.

2

The algorithm used in the present work is a second-order predictor corrector scheme
in time, following [12,11,3]. This predictor-corrector formulation reduces the Navier
Stokes calculation to separate evaluation of classical PDE discretizations. The parabolic
term is advanced and then the elliptic constraint is enforced. We use an approximate
projection to enforce the divergence-free constraint following [22,1,4].

1.2 Prior Work

There have been many efforts in two dimensions to solve the incompressible flow equa-
tions with embedded boundaries. Almgren, et. al [2] present a second-order algorithm
to solve the two-dimensional incompressible Euler equations using a finite volume dis-
cretization. Popinet [28] solves the two-dimensional incompressible Euler equations
and uses a second, order, finite difference, tree-based adaptive strategy. Calhoun [8]
solves vorticity-stream function representation of the Navier Stokes equations in two
dimensions and also shows second order convergence. There have been many others.

Recently there have been several algorithms published that use finite differences to
solve the incompressible Navier Stokes equations in three dimensions. Marella, et al.
[30] solve the three-dimensional Navier Stokes equations in the context of moving
boundaries. They use level sets for the description of the geometry and use a finite
difference discretization of the equations (they present no formal convergence tests).
Gilmanov, et al. [17] solve the 3D Navier Stokes equations in the context of moving
boundaries using a hybrid embedded boundary-immersed boundary method. This
finite difference method uses a staggered grid and shows second order convergence.

The present work follows from finite volume methods in other fields. Pember, et. al [27]
solve the compressible Euler equations using an early embedded boundary method.
Modiano, et. al [26] made that method consistent by improving the discretization at
the embedded boundary. Colella, et. al [14] extended that method to three dimen-
sions and improved its stability. Johansen, et. al [19] solve elliptic equations using
finite volume discretizations at the embedded boundary. Schwartz, et. al [31] and
McCorquodale, et. al [24] solve parabolic equations using a similar discretization. It
is in these works that it was found that a Crank Nicholson time discretization is only
marginally stable with finite volume embedded boundary discretizations. They use
an L∞-stable time discretization developed by [33].

3

2 Temporal discretization

This starting point for the semi-implicit approach is the discretization in time of

dq

dt
= L(q) + f q, f = q(t), f(t) ∈ Rm (5)

where L is (a discretization of) a second-order elliptic operator discribed in section
3.4. In [3], Crank-Nicholson was used as a basis for discretizing (5) in time. However,
it was observed in [20,25], that the neutral stability of Crank-Nicholson interacts with
the embedded boundary discretization of the Laplacian to give an unstable method
for (5). Following [25,33], we use instead a second-order accurate, L∞-stable implicit
Runga-Kutta method that is 2

qn+1 = (I − µ1L)
−1(I − µ2L)

−1((I + µ3L)q
n + (I + µ4L)f

n+
1
2)

fn+
1
2 = f((n+ 1

2
)∆t), qn ≈ q(n∆t)

LTGA(qn, fn+
1
2) =

qn+1 − qn

∆t
− fn+

1
2

If q(t) is a solution of (5), then

LTGA(qn, fn+
1
2) = (Lq)((n+ 1

2
)∆t) +O(∆t2)

We use this method to discretize the projection form of the Navier-Stokes equations.

If ~un ≈ ~u(n∆t), pn−
1
2 ≈ p((n− 1

2
)∆t), where ~u(t), p(t) are spatial discretizations of

2 For a second-order L∞-stable method, following [33], we pick a > 1/2 and

µ1 =
a−

√
a2−4a+2
2 ∆t

µ2 =
a+

√
a2−4a+2
2 ∆t

µ3 = (1− a)∆t

µ4 = (12 − a)∆t

For a method that uses real arithmetic only, the truncation error is minimized by taking
a = 2−

√
2− ǫ, where ǫ is machine precision.

4

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�

�
�
�
�
������

��������
��������

���
���
���

���
���
���

����

����
����
����
����

����
����
����
����

��
��
��
��

����
����
����

����
����
����

Fig. 1. Decomposition of the grid into regular, irregular, and covered cells. The gray regions
are outside the solution domain.

the solution to (??), then

~u∗ = ~un −∆t(~u · ∇~un+
1
2) + LTGA(~un,−~u · ∇~un+

1
2 −∇pn−

1
2)

~un+1 = P~u∗

∇pn+
1
2 = −1

∆t
Q~u∗

(6)

where ~u · ∇~un+
1
2 approximates the advective derivative at time (n+ 1

2
)∆t and P and

Q are spatial approximations to the projection operator defined in (4). In the next
section, we define in detail the spatial discretizations.

3 Spatial Discretization

3.1 Embedded boundary description

Cartesian grids with embedded boundaries are useful to describe finite-volume repre-
sentations of solutions to PDE in the presence of irregular boundaries. In Figure 1,
the grey area represents the region excluded from the solution domain. The underly-
ing description of space is given by rectangular control volumes on a Cartesian grid
Υi = [(i− 1

2
V)h, (i+ 1

2
V)h], i ∈ ZD, where D is the dimensionality of the problem, h

is the mesh spacing, and V is the vector whose entries are all one. Given an irregular
domain Ω, we obtain control volumes Vi = Υi

⋂
Ω and faces A

i±1
2
x̂d

which are the

intersection of the boundary of ∂Vi with the coordinate planes {~x : xd = (id ± 1
2
)h}.

We also define AB
i
to be the intersection of the boundary of the irregular domain with

the Cartesian control volume: AB
i
= ∂Ω

⋂
Υi. For ease of exposition, we will assume

here that there is only one control volume per Cartesian cell. The algorithm described
here has been generalized to allow for boundaries whose width is less than the mesh
spacing.

To construct finite-difference methods using this description, we will need several

5

quantities derived from these geometric objects.

• Volume fractions κ and area fraction α:

κi =
|Vi|
hD

α
i+

1
2
x̂s

=
|A

i+
1
2
x̂d
s

|

h(D−1)
, αB

i
=

|AB
i
|

hD−1

• The centroids of the faces and of AB
i
; and n, the average of outward normal of ∂Ω

over AB
i
.

~x
i+

1
2
x̂d

=

 1

|A
i+

1
2
x̂d
|

∫

A
i+

1
2
x̂d

~xdA

~xB
i
=

 1

|AB
i
|
∫

AB
i

~xdA

n̂i =
1

|AB
i
|
∫

AB
i

n̂dA

where D is the dimension of space and 1 <= d <= D. We assume we can compute all
derived quantities to O(h2). Colella, et. al [15] contains our algorithm for calculating
these geometric quantities at sufficient accuracy from a surface description.

We then define the conservative divergence approximation of a flux ~F

D(~F)v =
1

hκv

((
D∑

d=1

(α
i+

1
2
x̂d
F̃ d

i+
1
2
x̂d

− α
i−1

2
x̂d
F̃ d

i−1
2
x̂d
) + αB

v
FB
v
) (7)

where F̃
i+

1
2
x̂d

indicates that the flux has been interpolated to the face centroid us-

ing linear (2D) or bilinear (3D) interpolation of face-centered fluxes, as in [31]. For
example, given the face with outward normal x̂1, with centroid ~x, define the linearly
interpolated flux in the d (d 6= 1) direction by

F̃ d

i+
1
2
x̂1

= ηF
i+

1
2
x̂1

+ (1− η)F
i+

1
2
x̂1±x̂d

η = 1− |~x · x̂d|
hd

± =

+ ~x · x̂d > 0

− ~x · x̂d ≤ 0.

(8)

6

Fig. 2. Three-dimensional bilinear flux

The bilinear interpolation of the flux for the face with normal x̂1 can be written

F̃
i+

1
2
x̂1

= ωF d

i+
1
2
x̂1

+ (1− ω)F d

i±x̂d′+
1
2
x̂1

ω = 1− |~x · x̂d′ |
hd′

± =

+ ~x · x̂d′ > 0

− ~x · x̂d′ ≤ 0

(9)

where d′ 6= d, d′ 6= 1, as in figure 2.

3.2 Projection discretization

We need to define two types of projection. The first, a so called “MAC” projection is
used to extract the divergence-free component of a velocity field. The second, referred
to here as a “cell- centered” projection operator, is used to extract the divergence-free
component of a cell-centered velocity field.

We define the face-centered gradient of a cell-centered scalar φ to be the ordinary
second-order accurate finite-difference approximation in the normal direction and the
average of neighboring normal gradients in other directions,

Gmac(φ)d
i+

1
2
x̂d

=
1

h
(φ

v+(i+
1
2
x̂d)

− φ
v−(i+

1
2
x̂d)

),

and for d′ 6= d

Gmac(φ)d
′

i+
1
2
x̂d

=
1

NG

∑

i+
1
2
x̂d

′

∈Gd′,d

(Gmac(φ)d
′

i+
1
2
x̂d

′).

7

Where Gd′,d is the set of faces in the d′ direction who contain one control volume in
i+ 1

2
x̂d and NG is the number of faces in this set. On a regular grid, G is the set of

four neighboring faces in the d′ direction. We define our discrete Laplacian operator
to be the conservative divergence of the face-centered gradient,

L ≡ DGmac

Our MAC projections are defined to be

Pmac ≡ (I −Gmac(L−1)D)

Qmac ≡ (I − Pmac)

Operationally, we first solve the discrete Poisson’s equation

κiLφi = κiD
mac(~u

i+
1
2
x̂d
) (10)

for φi and subsequently subtract the face-centered gradient from the velocity to obtain
the divergence-free field

Pmac(~u)
i+

1
2
x̂d

= ~u
i+

1
2
x̂d

−Gmacφ
i+

1
2
x̂d

The boundary conditions for the solve (10) are ∇φ · n̂ = 0 at inflow or no-flow
boundaries, φ = 0 at outflow boundaries. Since the embedded boundary is a no-flow
boundary, FB = 0 (see equation 7) in this context. Trebotich, et al. [32] explain how
these boundary conditions are correct even at inflow faces as the divergence of the
velocity field holds the inhomogeneity.

Our cell-centered projection is the composition of our MAC projection with two
averaging operators. We define an operator to average cell-centered velocites to face
centers: For a face with a normal direction d we have

AC→F (ud)
i+

1
2
x̂d

= 1
2
(ud

v+x̂d + ud
v
)

We also define an averaging operator to average gradients from face centers to cell
centers.

AF→C(Gmac(φ)d)i =
1
2
(Ḡmac,d

i+
1
2
x̂d
(φ) + Ḡ

mac,d

i−1
2
x̂d
(φ))

where Ḡ
mac,d

i+
1
2
x̂d
(φ) = G

mac,d

i+
1
2
x̂d
(φ) if (α

i+
1
2
x̂d

> 0). Otherwise, we must extrapolate to a

covered face, as described in Section 3.6. The cell-centered projection operators are
defined to be

Pcc(~u) = ~u− AF→C(Qmac(AC→F (~u)).

Qcc ≡ (I − Pcc).

8

3.3 Stability of the approximate projection

One can separate projections into two categories: discrete and approximate. To define
a projection operator, one defines a discrete divergence D, a gradient discretization
G and a Laplacian discretization L. A discrete projection is a projection whose di-
vergence operator is the discrete adjoint of its gradient operator with respect to
some appropriate discrete scalar inner product and vector inner product <Ghφ, ~u> =
<D~u, φ> and whose Laplacian operator is given by L ≡ DG. An approximate pro-
jection is one which does not meet one of these constraints. Discrete projections are
idempotent P(P(~u)) = P(~u). This is an attractive property that can simplify algorithm
design. The MAC projection described above is a discrete projection.

There are some disadvantages to discrete projections, however. For colocated veloc-
ities and symmetric discretizations of divergence and gradient, L ≡ DG typically
produces discretizations of the Laplacian that are badly behaved (the stencils be-
come decoupled [18]). Approximate projections simplify numerical linear algebra by
sacrificing some of the design advantages associated with discrete projections. The
cell-centered projection described in the previous section is an approximate projec-
tion because the Laplacian is not the composition of the divergence and gradient
operators (L 6= DG) and is therefore not idempotent (P(P(~u)) 6= P(~u)). Following
Martin, et. al [23], we have designed our update equation 6 around having all of the
velocity field projected at every time step, as opposed to just projecting an update
(the methods are eqivalent if one uses a discrete projection). In this section, we show
that our approximate projection is a stable operator in that the divergence of a ve-
locity field diminishes with repeated application of the projection. We start with an
initial velocity field of potential flow over a sphere (or cylinder in 2d) with radius =
0.1. The sphere is in the center of a unit square domain. We iteratively project the
velocity field ~u and evaluate the norm of the diverence κD~u the norm of ∇φ after each
projection. Figures 3, 4, 5 and 6 show that all norms of both quantities monotonically
decrease with number of projection iterations.

3.4 Viscous operator discretization

In section 2 we describe or temporal discretization. In that section, we make reference
to a Helmholtz operator. In this section we define that operator. We are solving

(I + µL)φ = rho (11)

where µ is a constant. Just as we did for the MAC projection, we discretize L ≡ DGmac

(see equation 7). In this context, however, since the irregular boundary is a no-slip

9

boundary, we must solve (11) with Dirichelet boundary conditions φ = 0 on the
irregular boundary. To do this, we must compute

FB =
∂φ

∂n̂

at the embedded boundary. We follow Schwartz, et. al [31] and compute this gradient
by casting a ray into space, interpolating φ to points along the ray, and computing the
normal gradient of phi by differencing the result. In three dimensions, refer to figure
7. We cast a ray along the normal of the VoF from the centroid of area of the irregular
face C. We find the closest points B and C where the ray intersects the planes formed
by cell centered points. The axes of these planes d1, d2 will be the directions not equal
to the largest direction of the normal. We use biquadratic interpolation to interpolate
data from the nearest cell centers to the intersection points B and C. In two dimesions,
we find the nearest lines of cell centers (instead of planes) and the interpolation is
quadratic. We then use this interpolated data to compute a O(h2 approximation of
∂φ

∂n̂
. In the case where there are not enough cells to cast this ray, we use a least-squares

approximation to ∂φ

∂n̂
which is O(h). As shown in [19], the modified equation analysis

shows that, for Dirichlet boundary conditions, it is sufficient to have O(1) boundary
condtions to achieve second order solution error convergence for elliptic equations.

3.5 Advective derivative discretization

Since the flow is incompressible, we can discretize the solution ~u · ∇~u = ∇ · (~u~u).
We use (7) with F = ~u~u to generate a conservative discretization of ∇ · (~u~u). Ide-
ally we would like to use the this approximation to ~u · ∇~u in our solution update.
The difficulty with this approach is that the CFL stability constraint on the time
step is at best ∆t = O(h

vmax
i

(κi)
1

D), where vmax
i

is the magnitude of the maximum

wave speed for the i
th control volume. This is the well known small-cell problem for

embedded boundary methods. There have been a number of proposals to deal with
this problem, including merging the small control volumes with nearby larger ones
[29,13], and the development of specialized stencils that guarantee the required can-
cellations [7,6,9,21]. The approach we have taken to this problem has been to expand
the range of influence of the small control volumes algebraically to obtain a stable
method [10,5,27]. The starting point for this approach is to compute a stable but non-
conservative approximation to ~u ·∇~u that does not include the effect of the embedded
boundary,

~u · ∇~uNC
i

=
1

2h

D∑

d=1

(u
n+

1
2
,d

i+
1
2
x̂d

+ u
n+

1
2
,d

i−1
2
x̂d
)(~u

n+
1
2

i+
1
2
x̂d

− ~u
n+

1
2

i−1
2
x̂d
). (12)

10

where the fluxes in this expression are centered at (i ± 1
2
x̂d)h. We use a linear hy-

bridization of the two estimates of ~u · ∇~u,

~u · ∇~un+
1
2 = κi(∇ · (~u~u))i + (1− κi)(~u · ∇~u)NC

i
). (13)

The small denominator in∇·(~u~u) is canceled and we obtain a stable method. However,
the method fails to conserve. This lack of conservation is measured by the difference
between the hybrid discretization and the conservative,

δMi = κi(∇ · (~u~u)n+
1
2 − ~u · ∇~un+

1
2) = κi(1− κi)(∇ · (~u~u)i − ~u · ∇~uNC

i
).

To maintain overall conservation, we redistribute δMi into nearby cells,

~u · ∇~u
n+

1
2

i
′ := ~u · ∇~u

n+
1
2

i
′ + wi,i′δMi , i

′ ∈ N(i), (14)

wi,i′ ≥ 0,
∑

i
′∈N(i)

wi,i′κi
′ = 1 (15)

where N(i) is some set of indices in the neighborhood of i. The sum condition (15)
makes the redistribution step conservative. The weights wi,i′ must be bounded inde-
pendent of (κi

′)−1. We use volume weighted redistribution,

wi,i′ = (
∑

i
′∈N(i)

κi
′)−1

where N(i) is a set of indices whose components differ from those of i by no more
than one and can be reached by a monotonic path.

Our procedure for calculating the velocities used to compute ∇ · (~u~u) assumes that
we have a second-order accurate method for computing velocities at the centers of
cell faces.

~u
n+

1
2

i+
1
2
x̂d

= ~u((i+ 1
2
x̂d)h, tn +

∆t

2
) +O(h2) (16)

We use these velocities in (12) to compute ~u · ∇~uNC. To compute ∇ · (~u~u), we inter-
polate ~u~u to face centroids as in (8)-(9). Critical to the success of this approach is the
calculation of ~u ·∇~uNC . In control volumes with κi << 1, (~u·∇~u)NC is almost entirely
responsible for the update of ~ui. For that reason, ~u ·∇~uNC must be designed carefully
so that, for example, the solution in small control volumes comes into equilibrium
with the larger control volumes around it.

11

3.6 Extrapolation to Covered Faces

A covered face is a face whose aperture vanishes. To compute ~u · ∇~uNC (see (12)),
we need a second-order solution at covered faces. The flux is obtained by choosing
the upwind value at the face. For the side of the face next to the control volume, we
use the extrapolated state from the control volume. For the other side of the covered
face, we must extrapolate from values at neighboring faces.

Specifically, assume that all i is not covered, but i ∓ x̂d is covered, so that the face
connecting the two is covered. Then we want to compute ~ui∓x̂d,±,d, given a collection
of values {Wi

′,±,d} that are assumed to be defined if α
i
′±1

2
x̂d

6= 0.

3.6.1 Two-dimensional Extrapolation

In two dimensions, extrapolation to covered faces is done as illustrated in Figure 8.
First we define the control volumes involved.

i
u = i + sd

′

x̂d′ − sdx̂d

i
s = i+ sdx̂d

i
c = i + sd

′

x̂d′

where d′ 6= d and sd = sign(nd).

Define ~uu,s,c, extrapolations to the edges near the control volumes near i.

~uu = ~ui
u,∓,d

~us = ~ui
s,∓,d − sd∆d~u

~uc = ~ui
c,∓,d

To extrapolate to the covered faces, we use a linear combination of the values defined
above to compute the value along a ray normal to the boundary and passing through
the center of the covered face. We then extrapolate that value to the covered face using
the second-order slopes combined with characteristic limiting described in Section 3.7.
In the case where one of the values being used to interpolate corresponds to a value
on the cell adjacent to the covered face in question, (the case illustrated in Figure 8)
we use a value extrapolated from i

s (the cell adjacent in the d direction) rather than
i. This choice satisfies the design criterion that the action of the nonconservative
evolution should, over time, tend to make the solution at i tend toward the value
of a locally constant solution in the surrounding cells. This was the design criterion

12

for computing covered faces in [27]; the procedure given here has the same goal, but
using an approach that produces second-order accurate fluxes. For example, in the
case of a linear equation and the normal pointing in the x̂1 direction, extrapolation
from a locally constant state to the right of i in Figure 8 leads to the solution in i to
eventually take on that constant value. If one used the value at the face extrapolated
from i, the solution would tend to the locally constant value be true only if the
advection velocity were negative; otherwise, the value at i would remain unchanged.

If |nd| < |nd′ |:

~ui∓x̂d,±,d =
|nd|
|nd′ |

~uc + (1− |nd|
|nd′ |

)~uu − (
|nd|
|nd′ |s

d∆d~u+ sd
′

∆d′~u)

∆d′′~u =
|nd|
|nd′ |

∆d′′

2 ~un
i
c + (1− |nd|

|nd′ |
)∆d′′

2 ~un
i
u , d′′ = 1, 2 (17)

If |nd| ≥ |nd′ |:

~ui∓x̂d,±,d =
|nd′ |
|nd|

~uc + (1− |nd′ |
|nd|

)~us − (
|nd′|
|nd| s

d′∆d′~u+ sd∆d~u)

∆d′′~u =
|nd′ |
|nd|

∆d′′

2 ~un
i
c + (1− |nd′|

|nd|
)∆d′′

2 ~un
i
s , d′′ = 1, 2 (18)

We found that the use of the linear interpolation algorithms (17), (18) to compute the
slopes used in extrapolating to the covered faces led to a more robust and accurate
algorithm than other simpler choices that we considered. The intent is to use slopes
computed at the same cell centers as the values used in the original linear interpolation
in Figure 8, and in the same proportions. By using that choice, it appears that no
further limiting of those slopes is required.

If one or both of the faces from which we are extrapolating are covered we drop order.
If only one of the faces is covered we set the extrapolated value to be the value on
the other face. If both faces are covered, we set the extrapolated value to ~un

i
.

3.6.2 Extrapolation to Covered Face in Three Dimensions

We define the direction of the face normal to be d and d1, d2 to be the directions
tangential to the face. The procedure extrapolation procedure is given as follows.

• Define the associated control volumes.

13

• Form a 2×2 grid of values along a plane h away from the covered face and bilinearly
interpolate to the point where the normal intersects the plane.

• Use the slopes of the solution to extrapolate along the normal to obtain a second-
order approximation of the solution at the covered face.

Which plane is selected is determined by the direction of the normal. See Figure 9
for an illustration.

If |nd| ≥ |nd1 |, |nd2|, we define a bilinear function B that interpolates the 2 × 2 grid
of values.

B(Q,∆) = A+Bξ + Cη +Dξη − ζ∆
i
00 (19)

A = Qi
00

B = sd1(Qi
01 −Qi

00)

C = sd2(Q
i
10 −Q

i
00)

D = sd1sd2(Qi
11 −Qi

00)− (Qi
10 −Qi

00)− (Qi
01 −Qi

00)

ξ =
|nd1 |
|nd|

, η =
|nd2 |
|nd|

, ζ = −1 + sd1ξ + sd2η + (sd1sd2 − 2sd)ξη

sdi = sign(ndi)

i
00 = i + sdx̂d

i
10 = i + sd1 x̂d1

i
01 = i + sd2 x̂d2

i
11 = i + sd1 x̂d1 + sd2 x̂d2

B interpolates the values in the (d1, d2) plane in Figure 9, with Qi
00 the value at A,

Q
i
00 − sd∆

i
00 the value at point B, and the remaining values filling in the bilinear

stencil. Using this function, we can define the extrapolated value on the covered face.

~ui∓x̂d,±,d =B(~u·,±,d,∆
d
2~u

n)− B(∆d
2~u

n,∆ ≡ 0)

− sd1
|nd1 |
|nd| B(∆

d1
2 ~un,∆ ≡ 0)− sd2

|nd2 |
|nd| B(∆

d2~u,∆ ≡ 0)

d1 6= d2 6= d

(20)

14

We use the bilinear stencil to interpolate values of both the solution and of the slopes,
except that we use piecewise-constant extrapolation to extrapolate the value of the
slopes from A to B.

The case where one of the tangential directions corresponds to the largest component
of the normal is similar. Assuming |nd1 | > |nd|, |nd2|, we define

B(Q) = A +Bζ + Cη +Dξη (21)

with

A = Qi
00 (22)

B = sd(Q
i
01 −Q

i
00) (23)

C = sd2(Qi
10 −Qi

00) (24)

D = sdsd2(Qi
11 −Qi

00)− (Qi
01 −Qi

00)− (Qi
10 −Qi

00) (25)

ζ =
|nd|
|nd1 | , η =

|nd2 |
|nd1 | (26)

i
00 = i + sd1 x̂d1 − sdx̂d

i
10 = i + sd1 x̂d1 − sdx̂d + sd2 x̂d2

i
01 = i + sd1 x̂d1

i
11 = i + sd1 x̂d1 − sd2 x̂d2

Then

~ui∓x̂d,±,d =B(~u·,±,d)− B(∆d1
2 ~u)

− sd
|nd|
|nd1 |B(∆

d
2~u)− sd2

|nd2 |
|nd1 |B(∆

d2
2 W)

(27)

If any of the values required to perform the interpolation are unavailable, e.g. because
the cells are covered, we drop order by using a weighted sum of the available values:

~ui∓x̂d,±,d =

∑
i
′ ~ui

′,±,dκi
′

∑
i
′ κi

′

(28)

15

where the sums are over i
′ ∈ {i00, i01, i10, i11}, provided that at least one of the

i
′ is not covered. If all of the faces used for interpolation are covered, we set the
extrapolated value to be ~un

i
.

3.7 Slope Calculation

The notation

CC = A | B | C

means that the 3-point formula A is used for CC if all cell-centered values it uses are
available, the 2-point formula B is used if the cell to the right (i.e. the high side) of
the current cell is covered, and the 2-point formula C is used if the cell to the left
(i.e. the low side) current cell is covered.

To compute the limited differences in the first step on the algorithm, we use the
second-order slope calculation [3] with van Leer limiting.

∆d
2Wi = ∆vL(∆CWi,∆

LWi,∆
RWi) | ∆V LLWi | ∆V LRWi

∆BWi =
2
3
((W − 1

4
∆d

2W)i+x̂d − (W + 1
4
∆d

2W)i−x̂d)

∆CWi =
1
2
(W n

i+x̂d −W n
i−x̂d)

∆LWi = W n
i
−W n

i−x̂d

∆RWi = W n
i+x̂d −W n

i

∆3LWi =
1
2
(3W n

i
− 4W n

i−x̂d +W n
i−2x̂d)

∆3RWi =
1
2
(−3W n

i
+ 4W n

i+x̂d −W n
i+2x̂d)

∆V LLWi = min(∆3LWi,∆
LWi) if ∆3LWi ·∆LWi > 0

∆V LLWi = 0 otherwise

∆V LRWi = min(∆3RWi,∆
RWi) if ∆3RWi ·∆RWi > 0

∆V LRWi = 0 otherwise

We apply the van Leer limiter component-wise to the differences.

16

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

L∞ (div(vel))
L1(div(vel))
L2(div(vel))

Fig. 3. Norms (L1, L2, L∞) of κD~u versus number of cell-centered projection iterations. A
2D test where h = 1/256.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1 10 100

L∞ (|grad(phi)|)
L1(|grad(phi)|)
L2(|grad(phi)|)

Fig. 4. Norms (L1, L2, L∞) of ∇φ versus number of cell-centered projection iterations. A
2D test where h = 1/256.

17

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100

L∞ (div(vel))
L1(div(vel))
L2(div(vel))

Fig. 5. Norms (L1, L2, L∞) of κD~u versus number of cell-centered projection iterations. A
3D test where h = 1/64.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100

L∞ (|grad(phi)|)
L1(|grad(phi)|)
L2(|grad(phi)|)

Fig. 6. Norms (L1, L2, L∞) of ∇φ versus number of cell-centered projection iterations. A
3D test where h = 1/64.

18

A

B

C

B

d1

d2

Fig. 7. Ray casting to get fluxes for Dirichlet boundary conditions at the irregular boundary.
A ray is cast along the normal from the centroid of the irregular area C and the points A
and B are the places where this ray intersects the planes formed by cell centers. Data is
interpolated in these planes to get values at the intersection points. That data is used to
compute a normal gradient of the solution.

.

Ae

B

C A

X

Fig. 8. Illustration of extrapolation to covered faces in two dimensions The covered face is
at C. We extrapolate from A to Ae and interpolate between Ae and B to the point X where
the boundary normal intersects the line. We then extrapolate back along the normal to get
to the covered face.

19

d1

d2

ABC

Fig. 9. Illustration of extrapolation to covered faces in three dimensions. The covered face
is at C. We extrapolate from A to B to form a plane of values in d1 − d2. We interpolate
within that plane to the point X where the boundary normal intersects the plane. We then
extrapolate back along the normal to get to the covered face.

20

4 Results

4.1 Convergence Tests

We define a volume-weighted averaging operator A

A(~uh)ic =

∑
if∈R(ic)

~uif
κif

∑
if∈R(ic)

κif

,

where R(ic) is the set of control volumes formed by a graph refinement of ic. The
solution error at a given grid resolution, ǫ, is defined by

ǫe ≡ ~uh(t)− ~ue(t)

where t is some fixed time interval independent of the mesh spacing. We approximate
the exact solution by using the average of a finer solution at the same time

ǫ2h = ~u2h(t)−A(~uh(t))

The L1 norm of the error is calculated as follows:

L1(E) =
1

V

∫

Ω

|E|dV =
1

∑
Ω
κi

∑

Ω

κi|Ei|

The L2 norm of the error is calculated as follows:

L2(E) = (
1

V

∫

Ω

E2dV)
1

2 = (
1

∑
Ω
κi

∑

Ω

κiE
2
i
)
1

2

The order of convergence p is estimated by

p =
log(|ǫ

2h|
|ǫh|)

log(2)

Finally, for the purpose of the convergence study, we have turned off the van Leer
limiters, using instead the linear difference formulas for computing slopes. This allows
us to determine the extent to which the modified equation analysis is valid, without
the contaminating effects of limiters acting at extrema in the interior of the domain.

The geometry is set to be a sphere (diameter = 0.1) in the center of a x-axis aligned
cylinder (diameter = 0.98). See 10 for an illustration. The inflow velocity condition
is Poiseuille flow with unit maximum velocity. We set the viscosity ν = 0.01. The

21

Fig. 10. Initial and boundary conditions for the convergence tests. The geometry is set to
be a sphere (diameter = 0.1) in the center of a x-axis aligned cylinder (diameter = 0.98).
The inflow velocity condition is Poiseuille flow with maximum velocity = 1.

N Variable Ec = A(u2h)− u4h Ef = A(uh)− u2h p

∞ vx 2.625923e-01 1.220771e-01 1.10

∞ vy 2.152841e-01 9.728703e-02 1.14

∞ p 5.282043e-02 5.484670e-02 -0.05

1 vx 8.017870e-04 1.249725e-04 2.68

1 vy 5.110770e-04 8.041446e-05 2.66

1 p 3.726635e-03 5.778275e-04 2.68

2 vx 2.822005e-03 1.004912e-03 1.48

2 vy 1.787750e-03 5.285102e-04 1.75

2 p 4.955850e-03 8.213788e-04 2.59

Table 1
Solution error in two dimensions. Convergence rates are calculated using LN norm. h = 1

512 .

solution time tf = 0.0256, the equivalent of 64 time steps at the finest resolution
(hf = 1.0

512
). The boundary conditions are no slip. The solution error tests are given

in tables 1 for two dimensions and 1 for three dimensions. We show second order
convergence in L1.

22

N Variable Ec = A(u2h)− u4h Ef = A(uh)− u2h p

∞ vx 3.560051e-01 1.560253e-01 1.19

∞ vy 2.068663e-01 8.783526e-02 1.23

∞ vz 2.068911e-01 8.783473e-02 1.23

∞ p 5.603254e-01 1.759296e-01 1.67

1 vx 2.594371e-04 5.192670e-05 2.32

1 vy 9.378651e-05 1.686378e-05 2.47

1 vz 9.375695e-05 1.686981e-05 2.47

1 p 1.359413e-04 2.701042e-05 2.33

2 vx 1.449043e-03 4.341411e-04 1.73

2 vy 4.765399e-04 1.257778e-04 1.92

2 vz 4.761483e-04 1.258223e-04 1.92

2 p 4.539508e-04 1.214530e-04 1.90

Table 2
Solution error in three dimensions. Convergence rates are calculated using LN norm. h =
1

512 .

4.2 External Flows

To demonstrate that the algorithm is robust for long runs with geometry, we present
two external flows.

In 11, we show the velocity field for two-dimensional flow over a cylinder with Re =
500. The initial velocity was uniform inflow with a small sinusoidal perturbation.

vx = 1vy = 0.1sin(2πx)

The boundary conditions at the top and bottom are solid wall. The boundary condi-
tions at the left is uniform inflow and outflow on the right. The results are consistent
with a von Karman vortex street.

In 12, we show the velocity field for three-dimensional flow over a sphere with Re =
100. The initial velocity was uniform inflow with a small sinusoidal perturbation.

vx = 1vz = vy = 0.1sin(2πx)

The boundary conditions at the top and bottom are solid wall. The boundary condi-
tions at the left is uniform inflow and outflow on the right. The flow soon stabilizes

23

Fig. 11. Embedded boundary calculation of two-dimensional flow over a circular cylinder.
The upper figure is the axial velocity, the lower is the transverse velocity. The grid resolution
is 512× 128. The Reynolds number based upon the diameter is 500. The velocity at inflow
is 1.0. There have been 12000 time steps taken and t=25.56.

into the field shown and the results are consitent with those shown in Van Dyke [16].

5 Conclusions

We have developed an algorithm for solving the incompressible Navier-Stokes equa-
tions in the presence of embedded boundaries. We have demonstrated that the algo-
rithm is second-order in L − 1 with refinement in space and time. We have demon-
strated that the algorithm is robust for long runs in complex geometries.

24

Fig. 12. Embedded boundary calculation of three-dimensional flow over a sphere. The upper
figure is the axial velocity, the lower one the transverse velocity. The grid resolution is
256 × 128 × 128. The Reynolds number based upon the diameter is 100. The velocity at
inflow is 1.0. There have been 600 time steps taken and t=1.96.

25

References

[1] A. S. Almgren, J. B. Bell, and W. G. Szymczak. A numerical method for the
incompressible Navier-Stokes equations based on an approximate projection. SIAM

J. on Sci. Comp., 17:358–369, 1996.

[2] Ann S. Almgren, John B. Bell, Phillip Colella, and Tyler Marthaler. A cell-
centered Cartesian grid projection method for the incompressible Euler equations in
complex geometries. In Proceedingsof the AIAA 12th Computational Fluid Dynamics

Conference,, San Diego, California, June 1995.

[3] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the
incompressible Navier-Stokes equations. J. Comput. Phys., 85:257–283, 1989.

[4] J. B. Bell, P. Colella, and L. H. Howell. An efficient second order projection method
for viscous incompressible flow. In AIAA 10th Comp. Fluid Dynamics Conf., pages
360–367, 1991.

[5] J.B. Bell, P. Colella, and M.L. Welcome. Conservative front-tracking for inviscid
compressible flow. In AIAA 10th Computational Fluid Dynamics Conference. Honolulu,
pages 814–822, 1991.

[6] M. Berger, C. Helzel, and R. LeVeque. H-box methods for the approximation of
hyperbolic conservation laws on irregular grids. SIAM Journal of Numerical Analysis,
41:893–918, 2003.

[7] M. J. Berger and R. J. Leveque. Stable boundary conditions for Cartesian grid
calculations. Technical Report 90-37, ICASE, May 1990.

[8] D. Calhoun. A Cartesian grid method for solving the two-dimensional streamfunction-
vorticity equations in irregular regions. J. Comput. Phys., 176(2):231–275, 2002.

[9] C.Helzel, M.J.Berger, and R.J.LeVeque. A high–resolution rotated grid method for
conservation laws with embedded geometries. SIAM J. Sci. Stat. Comput., 2005.

[10] I. L. Chern and P. Colella. A conservative front-tracking method for hyperbolic
conservation laws. Technical Report UCRL-97200, Lawrence Livermore National
Laboratory, 1987.

[11] A. J. Chorin. Numerical solutions of the Navier-Stokes equations. Math. Comp., 22:745–
762, 1968.

[12] A. J. Chorin. On the convergence of discrete approximations to the Navier-Stokes
equations. Math. Comp., 23:341–353, 1969.

[13] W. J. Coirier and K. G. Powell. An assessment of Cartesian-mesh approaches for the
euler equations. Journal of Computational Physics, 117:121–131, 1995.

26

[14] P. Colella, D. T. Graves, B. Keen, and D. Modiano. A Cartesian grid embedded
boundary method for hyperbolic conservation laws. J. Comput. Phys., 211(1):347–366,
2006.

[15] P. Colella, T. Ligocki, and P. Schwartz. Using the divergence theorem for geometry
generation. unpublished.

[16] Milton Van Dyke. An Album of Fluid Motion. Parabolic Press, Stanford, CA, 1982.

[17] A. Gilmanov and F. Sotiropoulos. A hybrid Cartesian/immersed boundary method
for simulating flows with 3d, geometrically complex moving bodies. J. Comput. Phys.,
207(2):457–492, 2005.

[18] Louis H. Howell and John B. Bell. An adaptive-mesh projection method for viscous
incompressible flow. To appear, SIAM Journal of Scientific Computing.

[19] H. S. Johansen and P. Colella. A Cartesian grid embedded boundary method for
Poisson’s equation on irregular domains. J. Comput. Phys., 147(2):60–85, December
1998.

[20] Hans Svend Johansen. Cartesian Grid Embedded Boundary Methods for Elliptic and

Parabolic Partial Differential Equations on Irregular Domains. PhD thesis, Dept. of
Mechanical Engineering, Univ. of California, Berkeley, December 1997.

[21] Benjamin Keen and Smadar Karni. A second order kinetic scheme for gas dynamics on
arbitrary grids. J. Comput. Phys., 2005.

[22] M. F. Lai and P. Colella. An approximate projection method for the incompressible
Navier-Stokes equations. unpublished.

[23] D Martin and P Colella. A cell-centered adaptive projection method for the
incompressible Euler equations. J. Comput. Phys., 2000.

[24] P. McCorquodale, P. Colella, and H. Johansen. A Cartesian grid embedded boundary
method for the heat equation on irregular domains. J. Comput. Phys., 173(2):620–635,
November 2001.

[25] P. McCorquodale, P. Colella, and H. Johansen. A Cartesian grid embedded boundary
method for the heat equation on irregular domains. J. Comput. Phys., 173:620–635,
November 2001.

[26] D. Modiano and P. Colella. A higher-order embedded boundary method for
time-dependent simulation of hyperbolic conservation laws. In ASME 2000 Fluids

Engineering Division Summer Meeting, 2000.

[27] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome. An adaptive
Cartesian grid method for unsteady compressible flow in irregular regions. J. Comput.

Phys., 120(2):278–304, September 1995.

[28] S. Popinet. Gerris: a tree-based adaptive solver for the incompressible euler equations
in complex geometries. J. Comput. Phys., 190(2):572–600, 2003.

27

[29] J. J. Quirk. An alternative to unstructured grids for computing gas dynamics flows
around arbitrarily complex two-dimensional bodies. Computers and Fluids, 23:125–
142, 1994.

[30] H. Liu S. Marella, S. Krishnan and H.S. Udaykumar. Sharp interface Cartesian grid
method I: An easily implemented technique for 3d moving boundary computations. J.
Comput. Phys., 210(1):1–31, 2005.

[31] P. Schwartz, M. Barad, P. Colella, and T. Ligocki. A Cartesian grid embedded boundary
method for the heat equation and poisson’s equation in three dimensions. J. Comput.

Phys., 211(2):531–550, 2006.

[32] D. Trebotich and P. Colella. A projection method for incompressible viscous flow on
moving quadrilateral grids. J. Comput. Phys., (166):191–217, 2001.

[33] E.H. Twizell, A.B. Gumel, and M.A. Arigu. Second-order, l0-stable methods for the
heat equation with time-dependent boundary conditions. Advances in Computational

Mathmatics, 6:333–352, 1996.

28

