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Abstract

In this paper, we present an unsplit method for the time-dependent

compressible Navier-Stokes equations in two and three dimensions. We

use a a conservative, second-order Godunov algorithm. We use a Carte-

sian grid, embedded boundary method to resolve complex boundaries.

We solve for viscous and conductive terms with a second-order semi-

implicit algorithm. We demonstrate second-order accuracy in solutions

of smooth problems in smooth geometries and demonstrate robust behav-

ior for strongly discontinuous initial conditions in complex geometries.

1 Introduction

In this paper, we present an unsplit method for the time-dependent compress-
ible Navier-Stokes equations in two and three dimensions. This algorithm is an
extension of the algorithm in [9] to flows with viscous and thermal diffusion.
The Navier-Stokes equations contain parabolic terms that arise from conductiv-
ity and viscosity. There are several methods to advance these terms. In [10], for
example, a kinetic energy equation is evolved to get a stable approximation to
the viscous term in the energy equation. This solution is elegant but also difficult
to extend to multiple dimensions. We use a conservative, semi-implicit method
in which the hyperbolic terms are advanced explicitly and the parabolic terms
advanced implicitly. This approach to the compressible Navier-Stokes equations
has been used without embedded boundaries [3, 30, 16, 14, 11]. Our algorithm
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follows the basic outline in the mapped grid algorithm presented in [30], in which
the velocity and temperature evolution are split. They use a Crank-Nicolson
time evolution with the energy-momentum coupling term treated explicitly. We
use a hybrid approach to energy-momentum coupling. Also, since Crank Nicol-
son has been shown to be marginally stable in certain cases [23], we use the L0-
stable algorithm presented in [31] for elliptic coupling. We present our changes
to the [31] algorithm that were necessary to make the linear equations tractable
in the presence of small cells. This algorithm has been implemented with adap-
tive mesh refinement (AMR) as described in [4, 1]. All our cut cells are refined
to the finest level, reducing all coarse-fine interactions (such as refluxing and
coarse-fine interpolation) to exactly those described in [30].

Dragovic, et al. [12] present a two-dimensional algorithm for viscous, con-
ducting compressible flow with embedded boundaries. They use a split hyper-
bolic scheme, explicit updates of the viscous state and the (formally inconsis-
tent) extended state algorithm developed in [24]. Our algorithm uses an unsplit
scheme (as seen in [8, 25, 2]) and works in two and three dimensions. Ghias, et
al. [13] present an immersed boundary method to solve the same set of equa-
tions for subsonic applications. Hartmann, et al. [15] present a cut-cell method
that uses a form of cell merging to achieve small-cell stability. Berger, et al.
[5] survey a wide variety of these algorithmic permutations. We use redistribu-
tion (first presented by Chern, et al. [7]) for small-cell stability. We use the
(formally consistent) approach in [9] to construct extended states. To evaluate
viscous fluxes at the embedded boundary we use the ray-casting algorithm de-
veloped in [18] for Poisson’s equation. Also, for increased stability, we treat the
viscous stress and conductivity terms implicitly.

This algorithm is suitable for use in applications where compressibility is
important and the geometries are complex. Our target application is flow inside
of capillary tubes in laser wakefield particle accelerators. In these accelerators,
the pressure and temperature is driven very high along the axis of a capillary
tube. The resulting flow produces a low density core through which lasers are
shot. The capillary is connected to fill tubes which are used to fill the capillary
with gas [27, 19, 20, 29]. We present a simplified version of this problem as our
example to demonstrate robustness while acknowledging that other physics in
these problems (such as ionization and magnetization) are very important. We
drive a capillary tube with a large pressure pulse to demonstrate the stability of
the algorithm under extreme conditions. The geometric configuration is derived
from the experimental setup described in [29].

There are of course many regimes for which the compressible Navier Stokes
equations are relevant. The regime of interest for this algorithm has substantial
compressibility effects (including shocks) as well as substantial viscous effects.
We are also interested in time-accurate (as opposed to steady state calcula-
tions).For algorithm validation,we run several examples which demonstrate the
efficacy of the algorithm in this regime.

First we present convergence tests demonstrating second-order solution er-
ror accuracy in two and three dimensions. For these tests, we use a smooth,
subsonic (M = 0.5) flow inside a sphere. This demonstrates that, even with
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compressibility effects, we get the expected convergence rate for smooth prob-
lems.

Next, for more a quantitative validations, we present a boundary layer cal-
culation and a viscous shock reflection calculation. Charest, et al. [6], present
a low-Mach number algorithm for steady state calculations. They present a
boundary layer calculation that reproduces the behavior of the similarity solu-
tion which emerges from analysis (a Blasius boundary layer profile). We present
a similar run which also reproduces Blasius behavior. This demonstrates that
the algorithm has correct boundary layer behavior.

Glaz, et al. [14] present a comparison between inviscid calculations of shock
reflections and experimental results. They show a case where viscous effects
cause substantial changes in the reflection pattern. We present both viscous
and inviscid calculations of the same problem and show good agreement with
their results. This demonstrates, that even in this very complex, time-dependent
flow, we compare well with experiment.

2 Notation

Cartesian grids with embedded boundaries are useful to describe finite-volume
representations of solutions to partial differential equations in the presence of
irregular boundaries. In figure 1, the grey area represents the region excluded
from the solution domain. The underlying description of space is given by
rectangular control volumes on a Cartesian mesh Υi = [(i− 1

2v)h, (i+
1
2v)h], i ∈

Z
D, where D is the dimensionality of the problem, h is the mesh spacing, and

v is the vector whose entries are all one. Given an irregular domain Ω, we
obtain control volumes Vi = Υi

⋂

Ω and faces A
i± 1

2
ed which are the intersection

of the boundary of ∂Vi with the coordinate planes {x : xd = (id ± 1
2 )h}. We

also define AB
i

to be the intersection of the boundary of the irregular domain
with the Cartesian control volume: AB

i
= ∂Ω

⋂

Υi. For ease of exposition, we
will assume here that there is only one control volume per Cartesian cell. The
algorithm described here has been generalized to allow for boundaries whose
width is less that the mesh spacing.

To construct finite-volume methods using this description, we will need sev-
eral quantities derived from these geometric objects.

• Volume fractions κ and area fraction α:

κi =
|Vi|

hD
, α

i+ 1
2
es

=
|A

i+ 1
2
ed
s
|

hD−1
, αB

i
=

|AB
i
|

hD−1

• The centroids of the faces and of AB
i
; and n, the average of outward normal

3



���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

Figure 1: Illustration of cut cells. The shaded area is outside the solution
domain.
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of ∂Ω over AB
i
.

x
i+ 1

2
ed =

1

|A
i+ 1

2
ed |

∫

A
i+1

2
ed

xdA− (i+
1

2
e
d)h

x
B
i
=

1

|AB
i
|

∫

AB
i

xdA− ih

ni =
1

|AB
i
|

∫

AB
i

ndA

where D is the dimension of space and 1 <= d <= D. We assume we can
compute all derived quantities to O(h2). With just these geometric descriptors,

we can define a conservative discretization of the divergence operator. Let ~F =
(F 1...FD) be a function of x, then

∇ · ~F ≈
1

|Vi|

∫

Vi

~FdV =
1

|Vi|

∫

∂Vi

~F · ndA.

We discretize the divergence of the flux as

κD(F )i =
1

h

(

D
∑

d=1

∑

±=+,−

±α
i± 1

2
edF d(x

i± 1
2
ed) + αB

i
ni · ~F (xB

i
)

)

(1)

where (1) is obtained by replacing the normal components of the vector field ~F
with the values at the centroids. This converges to the exact divergence by the

relation D(F )i = ∇·F+O
(

h
κi

)

in cells which intersect the embedded boundary

and converges to O(h2) away from the boundary. The elliptic operators in this
calculation all take the form

L(φ) = a(x)φ+D(F (φ)).

We refer to a in this context as the identity coefficient.

3 System of Equations

We are solving the compressible Navier-Stokes equations, given here in conser-
vation form with hyperbolic terms to the left and elliptic terms to the right.

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρuu+ pI) = ∇ · σ

∂(ρE)

∂t
+∇ · (ρuE + up) = ∇ · (σu) +∇ · (ξ(∇T )) (2)
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In these equations, ρ is the mass density, u is the velocity, ξ is the thermal
conductivity, p is the pressure, and T is the temperature. The shear stress
tensor σ is given by

σ = µ(∇u+∇u
T ) + λ(∇ · u)I.

where µ and λ are the viscosity coefficients (typically λ = −2
3 µ). The total

energy is given by E = e + 1
2 |u|

2; the internal energy is given by e = CvT
(where Cv is the specific heat at constant volume). The fluid is assumed to be
an ideal gas (p = Cv(γ − 1)ρT ).

4 Algorithm Description

We define U = (ρ, ρu, ρE) and we define LH(U) = ∇ · F , the divergence of the
hyperbolic flux. The flux is given by

F =





ρu
ρuu+ pI
ρuE + up



 .

The divergence and the fluxes are computed in the same way as in [9]. To
summarize, a Taylor series extrapolation is done to produce second-order (in
both space and time) approximations to the fluxes at the centroids of the faces.
A conservative approximation to the divergence (Dc(F )) is computed using
(1). Ideally, we would use Dc(F ) for our hyperbolic divergence. The diffi-
culty with this approach is that the CFL stability constraint on the time step
for an algorithm using the conservative divergence for an explicit update is at
best ∆t = O( h

vmax
i

(κi)
1
D ), where vmax

i
is the magnitude of the maximum wave

speed for the i
th control volume. This is the well-known small-cell problem for

embedded boundary methods. Instead, we compute a stable, non-conservative
approximation to the divergence (Dnc(F )) using an extended state where neces-
sary and ignoring the embedded boundary. This extended state is extrapolated
from the interior. The effective divergence is

LH(U) = κDc(F ) + (1− κ)Dnc(F ).

The mass difference (δM) between using LH and using only the conservative
divergence Dc(F ) is given by

δM = κ(1− κ)(Dc(F )−Dnc(F ))

. This mass difference is redistributed to neighboring cells. The redistribution
algorithm is described in [7]. This hybrid formulation preserves conservation
and allows this algorithm to be stable using a time step constraint based on full
cells. We compute our time step as follows:

∆t =
CFh

Wmax , (3)
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where Wmax is the maximum wave speed in the problem and CF is the Courant
number (0 < CF < 1).

Define Lv to be the elliptic terms in the system of equations

Lv(U)i =





0
Lm(u)i

Lk(T )i + Ld(u)i





The term Lm is the discretization of the viscous stress term (Lm ≈ ∇·σ) and is
described in section 5.3. The term Lk ≈ ∇ · ξ∇T is a discretization of the heat
conduction term and is described in section 5.2. The term Ld ≈ ∇ · (σu) is the
viscous heating term and is described in section 5.1.

4.1 Outline

We begin with the state at time Un = U(n∆t), we advance the solution as
follows.

1. Compute U∗, the solution advanced explicitly using only hyperbolic terms.

U∗
i
= Un

i
−∆tLH

i
(Un)

This produces the final value of density (ρn+1 = ρ∗). From U∗, we
compute u

∗ and T ∗, the intermediate values of velocity and temperature
(which exclude the effects of conduction and viscosity).

2. Compute L0-stable approximations to the momentum diffusion Lm(U) =
∇ · σ by advancing the diffusion equation

ρ
∂u

∂t
= Lm(u)

using the method described in section 5

u
n+1 = GLm(ρn+1)u∗

where G is defined in equation 6. The stable approximation to Lm(u) is
calculated as

(Lm(u))n+
1
2 = ρn+1

(

u
n+1 − u

∗

∆t

)

,

giving us the final value of momentum:

(ρu)n+1 = (ρu)∗ +∆t(Lm(u))n+
1
2 .

The operator Lm is described in section 5.3.

3. Using the value of u calculated above, calculate the viscous dissipation of
energy (Ld ≈ ∇ · (σu)) as described in section 4.2. We then update the
energy with this term.

(ρE)∗∗ = (ρE)∗ +∆tLd(un+1)

From E∗∗, we compute the intermediate value of temperature T ∗∗.
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4. Compute L0-stable approximations to the conduction term

Lk(T ) = ∇ · ξ∇T

by advancing the diffusion equation

ρCv
∂T

∂t
= Lk(T )

using the method described in section 5,

Tn+1 = GLm(ρn+1Cv)T
∗∗.

where G is described in equation 6. The stable approximation to Lk(T )
is computed by

(Lk(T ))n+
1
2 = ρn+1Cv

(

Tn+1 − T ∗∗

∆t

)

,

giving us the final value of energy

(ρE)n+1 = (ρE)∗∗ +∆t(Lk(T ))n+
1
2 .

The operator Lk(T ) is described in section 5.2.

4.2 Viscous Dissipation Calculation

To avoid small-cell instabilities, we split up the Ld(U) into conservative and
non-conservative approximations much as we did with LH . The conservative ap-
proximation to Ld,c = ∇· (σu) is described in section 5.1. The non-conservative
form of the operator is given by the volume-weighted average of the neighbor’s
conservative operator evaluations. Define N(i) to be the set of cells reachable
from i by a unit monotone path. The non-conservative approximation of Ld is

Ld,nc(u)i =

∑

j∈N(i)

(κLd,c(u))j

∑

j∈N(i)

κj
.

We use a linear combination of conservative and non-conservative versions of
the divergence to advance the solution.

Ld(U) = κLd,c(u) + (1− κ)(Ld,nc(u))

To preserve conservation, we compute the the energy difference between this
version and the conservative version.

δE = ∆tκ(1− κ)(Ld,c − Ld,nc)

We push this energy correction δE into the solution implicitly. First we set a
right hand side R = 0 and redistribute δE into the cells of R that can be reached
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by a unit monotone path (as described in [7]). We then solve for a temperature
difference that can account for this energy using the conduction operator

(ρn+1CvI −∆tLk)δT = ∆tR

This change in temperature is interpreted as an increment to the energy as
follows:

(δE)∗∗ = ρ∗Cvδ
T .

We add (δE)∗∗ into E∗∗.

5 Stable Parabolic Discretizations

Twizell, et al. ([31]) present a second-order L0-stable algorithm to advance the
constant coefficient heat equation. Given the equation

∂φ

∂t
= νLφ (4)

their time advance takes the form

φn+1 = (I − µ1L)
−1(I − µ2L)

−1(I + µ3L)φ
n (5)

where µ1, µ2, µ3 are constants. In the present algorithm we have two parabolic
equations of the form

a
∂φ

∂t
= L(φ)

where a = a(x) > 0 is the identity coefficient. Define the operator M(φ) = L(φ)
a .

In the case of our viscous operator (section 5.3) Mm = Lm(u)
ρ and the case of

conduction (section 5.2), Mk(T ) = Lk(T )
ρCv

. In both cases, the denominators are
positive and restricted away from zero. In each case, a naive interpretation of
(5) yields the following:

φn+1 = (I − µ1M)−1(I − µ2M)−1(I + µ3M)φn.

This is problematic in the presence of small cells because this would involve
dividing by the volume fraction to evaluate M (see (1)) and volume fractions
here can be arbitrarily close to zero. Using the matrix identity (AB)−1 =
B−1A−1, we refactor the above equation.

φn+1 = GL(a)φ = (κaI − µ1κL)
−1(κa)(κaI − µ2κL)

−1(κaI + µ3κL)φ
n (6)

This is the implicit advance we use for stable discretizations of Lm(u) and
Lk(T ).
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5.1 Viscous Heating Operator

The viscous heating operator flux is an approximation to the shear stress dotted
with the velocity (Fh = σ · u).

Fh = (µ(∇u+∇u
T ) + λI∇ · u) · u (7)

We compute the shear stress as described in section 5.3. To get face-centered
velocities, we average from neighboring cells

u
i+ 1

2
ed =

1

2
(ui+ed + ui)

At embedded boundaries and domain boundaries we set this flux to zero because
the no slip condition requires that u|∂Ω = 0. We then can find the conservative
discretization of the operator Ld,c as given by (1).

5.2 Conductivity Operator

Our operator for heat conduction

Lk(T ) = ∇ · (ξ∇T )

is an extension to variable coefficients of the operator described in by Schwartz,
et al. [28]. The flux at face centers for the discretization in (1) is given by

FT
i+ 1

2
ed = ξ

i+ 1
2
ed

Ti+ed − Ti

∆x

Since we are representing thermally insulated embedded boundaries, FT
B = 0.

Given these fluxes, discretization of the operator is given by (1).

5.3 Viscous Stress Operator

For viscous diffusion, we first calculate the cell-centered gradient of the solution
using centered differences.

∂ud1

∂xd2
=

ud1
i+ed2 − ud1

i−ed2

2∆x

The face centered gradient uses this gradient for tangential gradients and dif-
ferences normal gradients directly.

(∇u)d
′

i+ 1
2
ed =

{

1
h (ui+ed − ui) if d = d′

1
2 ((∇u)d

′

i+ed + (∇u)d
′

i
) if d 6= d′

where

(∇u)d
i
=

1

2h
(ui+ed − ui−ed).
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We then construct the flux at the face using the appropriate gradients

F v = µ(∇u+∇u
T ) + λI∇ · u (8)

At the embedded boundary, we have a physical boundary condition that u =
0. Define a local coordinate system rotated to align with the normal to the
embedded boundary n̂ and the tangent plane (t̂1, t̂2). The Jacobian J of this
rotational transformation is given by

J =





n̂
t̂1

t̂2



 .

The transformation between a vector in Cartesian space (v) and a vector in
rotated space (vR) is given by

vR = Jv.

We start by treating each component of the velocity as a scalar φ. To create our
boundary flux, we use the Johansen extrapolation [18] to compute the normal
gradient of φ, (∇φR,n). We set the tangential components of the gradient of
φ to zero (a consequence of the no-slip condition). So, in the rotated frame
(∇φ)R = (∇φR,n, 0, 0). We then compute the Cartesian gradient of φ

∇φ = J−1(∇φ)R.

We then construct the boundary flux using (8). Given these fluxes, discretization
of the operator is given by (1).

5.4 Performance Implications of Implicit Parabolic Dis-

cretization

The time step constraint for the present algorithm is given by equation 3. Since
we are advancing our elliptic terms implicitly, this adds no additional time step
constraint. Suppose we were to advance equation 4 explicitly:

φn+1 = φn + ν∆texpL(φ
n) (9)

In the absence of cut cells, the stability constraint on this method is

∆tnoebexp <
∆x2

2Dν
.

where D is the dimensionality of the problem. For the conductivity operator
at constant density with constant coefficients, this relationship is exact with
ν = ξ/(ρCv).

To illustrate the performance tradeoff in the design decision to use the im-
plicit discretization, we compare the number of operator evaluations required
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to advance the solution. Define Nexp to be the number of operator evaluations
needed to advance the solution to a fixed time tf using equation 9:

Nexp ==
tf

∆texp
.

Define Nimp to be the number of operator evaluations needed to advance the
solution to a fixed time tf using equation 6. We solve our elliptic equations
using multigrid and we measure how many times the operators are applied.
This puts the implicit method in the worst light possible because coarse and
fine applications of the operator (through multigrid) are counted the same.

The problem in section 7 is the target application for this algorithm. When
we run this problem with 4 levels of refinement for a final time of 0.7 µs (which
accounts for 3 steps at the coarsest level and 48 total steps at all levels), the
conductivity operator is called Nimp = 600 times. For these parameters, the

time step restriction for the explicit advance is ∆tnoebexp = 2.63e − 10), so an
explicit advance would call the operator Nexp = 2665 times. For problems with
less resolution or lower viscosity, this performance tradeoff can easily flip and
make the explicit method more efficient. In the shock-boundary layer calculation
presented in section 9, for example, ∆tnoebexp > ∆t, which means that the explicit
parabolic advance for this case presents no addition time step constraint in the
absence of embedded boundaries.

With embedded boundaries, however, the time step constraint for the explicit
advance (equation 9) is far more severe. If κmin is the smallest volume fraction
in the domain, the true time step constraint for the explicit advance is given by

∆texp <
∆x2(κmin)

2
D

2Dν
.

In this context, let us reconsider the shock-boundary layer calculation for a final
time of 0.57µs (and all other parameters described in section 9), which is one
time step at the coarsest level and 97 time steps at all levels. The smallest
volume fraction at the finest level of this calculation is κmin = 3.83e− 7, which
means that ∆texp = 4.26e−15 and the number of operator evaluations required
for stability is given by Nexp = 1.34e8. The number of operator evaluations we
count for our implicit algorithm is Nimp = 37536. Clearly, in the presence of
small cells, the implicit advance is the more efficient algorithm to advance our
elliptic terms.

6 Convergence Tests

To test the convergence rate of the algorithm we start with an initial condition
of flow within a sphere (or a circle in two dimensions). All tests are done using
Richardson extrapolation which means that an average of a finer solution is used
as an exact solution. Define Ah−2h to be a volume-weighted averaging operator.
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Given Sf to the the set of fine volumes which cover a coarse volume i,

Ah−2h(f)i =

∑

if∈Sf
κif

fif
∑

if∈Sf
κif

Uh is defined to be our solution on a grid with resolution h. For an exact solution
Ue, we use Ue

2h = Ah−2h(Uh) and the error is given by

ǫh = Uh(t)− Ue(t). (10)

The order of convergence ̟ is estimated by

̟ =
log( ||ǫ

2h||
||ǫh||

)

log(2)
. (11)

We compute the convergence rates using compute using L∞, L1, and L2 norms
(all these norms are defined in [9]). The geometry of the test is a sphere with
radius in the center of a domain of length L. The initial condition of the
tests is given by an axisymmetric Gaussian disturbance f(r) = exp(−30(r/r0 −
0.5)2). The maximum Mach number is set to M = 0.5. Define (x, y, z) to
be Cartesian coordinates in a coordinate system whose origin is the sphere
center. Define the distance r = (x2 + y2 + z2)

1
2 . The velocity is given by u =

(−Mf(r)y/r0,Mf(r)x/r0) in two dimensions and u = (Mf(r)(z−y)/r0,Mf(r)(x−
z)/r0,Mf(r)(y − x)/r0) in three dimensions. Define v to be the magnitude of
the velocity vector. The density and pressure are given by ρ = γ(1 + v2/r), p =
(1 + v2/r). See table 7 for other solution parameters.

Solution error is a measure of the convergence rate of the solution run to a
fixed time. All refinements were advanced to a fixed time tf = 32µs. The finest
solution was advanced 64 time steps with ∆t = 0.5µs. Each successively coarser
solution was advanced half as many steps with twice as big a time step. This
results in a Courant number (CF , see equation 3) of approximately 0.1 for full
cells. The results of the solution error test are given in tables 1 through 6. We
demonstrate second order accuracy in all norms.
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Variable e4h→2h ̟ e2h→h

(ρ) 1.103e-02 1.980e+00 2.796e-03
(ρu)x 2.740e-03 1.822e+00 7.748e-04
(ρu)y 2.740e-03 1.822e+00 7.748e-04
(ρE) 2.006e-02 1.978e+00 5.092e-03

Table 1: Solution error convergence rates in two dimensions using L∞-norm for
h = 1

1024cm.

Variable e4h→2h ̟ e2h→h

(ρ) 2.519e-03 1.982e+00 6.377e-04
(ρu)x 3.645e-04 1.822e+00 1.031e-04
(ρu)y 3.645e-04 1.822e+00 1.031e-04
(ρE) 4.560e-03 1.978e+00 1.158e-03

Table 2: Solution error convergence rates in two dimensions using L1-norm for
h = 1

1024 cm.

Variable e4h→2h ̟ e2h→h

(ρ) 3.900e-03 1.978e+00 9.903e-04
(ρu)x 6.795e-04 1.824e+00 1.920e-04
(ρu)y 6.795e-04 1.824e+00 1.920e-04
(ρE) 7.066e-03 1.973e+00 1.801e-03

Table 3: Solution error convergence rates in two dimensions using L2-norm for
h = 1

1024cm.

Variable e4h→2h ̟ e2h→h

(ρ) 3.536e-02 1.979e+00 8.968e-03
(ρu)x 7.406e-03 1.814e+00 2.107e-03
(ρu)y 7.406e-03 1.814e+00 2.107e-03
(ρu)z 7.406e-03 1.814e+00 2.107e-03
(ρE) 6.887e-02 1.978e+00 1.748e-02

Table 4: Solution error convergence rates in three dimensions using L∞-norm
for h = 1

1024cm.
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Variable e4h→2h ̟ e2h→h

(ρ) 4.167e-03 1.986e+00 1.053e-03
(ρu)x 4.503e-04 1.805e+00 1.289e-04
(ρu)y 4.503e-04 1.805e+00 1.289e-04
(ρu)z 4.503e-04 1.805e+00 1.289e-04
(ρE) 7.767e-03 1.983e+00 1.965e-03

Table 5: Solution error convergence rates in three dimensions using L1-norm for
h = 1

1024cm.

Variable e4h→2h ̟ e2h→h

(ρ) 7.931e-03 1.982e+00 2.007e-03
(ρu)x 1.060e-03 1.810e+00 3.024e-04
(ρu)y 1.060e-03 1.810e+00 3.024e-04
(ρu)z 1.060e-03 1.810e+00 3.024e-04
(ρE) 1.495e-02 1.980e+00 3.790e-03

Table 6: Solution error convergence rates in three dimensions using L2-norm for
h = 1

1024cm.

µ 2.1e-5 kg/(m s)
λ -1.4e-5 kg/(m s)
Cv 3.00e2 J/(kg K)
ξ 1.7e-2 W/(m K)
L 1.0e-2m
r0 4.5e-3m
γ 1.4

Table 7: Initial condition setup for the convergence tests. See the text for
variable definitions.
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7 Capillary Tube Simulation

Our target application is the flow inside of capillary tubes in laser wakefield
particle accelerators. We present a simplified version of this problem as our ro-
bustness calculation while acknowledging that other physics in these problems
(such as ionization and magnetization) are very important. Refer to figure 2.
The main tube (C) and the fill tubes (A) are filled with gas. The experimental-
ists drive the core pressure pcore along the axis of the tube to a high value using
electrical charge, leaving the density constant. The resulting flow causes the
core to expand and create a low density, high energy core. In the experiment,
the laser (B) is shot through this low density core. Ideally this core should be
cylindrical and have a relatively flat density profile There is some concern in
the community, however, that the fill tubes can alter the core shape before the
laser is shot.

We present both two and three dimensional runs that are meant to be an
approximation to this problem. For a computational geometry we intersect a 200
micron diameter main tube with a perpendicular 50 micron diameter fill tube.
Figure 5 shows the geometric configuration. Both are filled with argon at 1Pa,
1 kg/m3. We initialize the core pressure to be pcore = 20Pa, leave the density
constant and initialize the velocity everywhere to zero. The core diameter is
100 microns. Figure 3 shows a two-dimensional run of the plane normal to the
central tube cutting through a filler tube. We plot the logarithm of density after
35 µs. Though the density profile in the core is relatively flat, the core shape is
no longer circular. Figure 4 shows a two-dimensional run of the plane along the
central tube cutting through a filler tube. We plot the logarithm of density after
35 µs. Though the density profile in the core is relatively flat, the core shape is
once again distorted by the presence of the filler tube. Figure 6 shows an axial
slice through a three-dimensional run after 50 µs and shows a similar result. To
be clear, since we do not include any source terms for the effects of ionization
or magnetization, this is greatly simplified approximation. We have, however,
managed to show that purely hydrodynamic effects can distort the shape of the
low density core.
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poutside 1.0 Pa
pcore 20.0 Pa

ρcore 1.0 kg/m
3

ρouside 1.0 kg/m
3

µ 2.1e-5 kg/(m s)
λ -1.4e-5 kg/(m s)
Cv 3.00e2 J/(kg K)
ξ 1.7e-2 W/(m K)
γ 5

3

Table 8: Initial condition setup for capillary tube problem. The initial velocity
is zero.

A

B

C

Figure 2: Illustration of wakefield accelerator. The main tube (C) and the fill
tubes (A) are filled with gas. The pressure and temperature is initialized to high
values up along the axis of the tube. The resulting flow causes this region to
expand and create a low density, high energy core. A laser (B) is shot through
this core.
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Figure 3: Two dimensional plot of log(ρ) after 35 µs. The base grid is 2562 and
there are 2 levels of refinement, all by a factor of 2. This means the effective
grid resolution is 10242. Though the density profile in the core is relatively flat,
the core shape is no longer circular.
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Figure 4: Two dimensional plot of log(ρ) after 35 µs. The base grid is 128x64
and there are 3 levels of refinement, all by a factor of 2. This means the effective
grid resolution is 1024x512.Though the density profile in the core is relatively
flat, the filler tube has distorted the profile.
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Figure 5: Geometric configuration of the three-dimensional example. The core
tube’s diameter is 200 microns; the filler tube’s diameter is 50 microns. The
core tube’s length is 1.2mm; the filler tube’s length is 0.85mm.
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Figure 6: Axial slice through three dimensional run plot of log(ρ) after 50 µs.
This is a one-level calculation with resolution 256x128x128. Though the density
profile in the core is relatively flat, the filler tube has distorted the profile.
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8 Boundary Layer Similarity Solution

Given a semi-infinite flat plate in a flow field at zero incidence to the flow, the
velocity profile over the plate can be calculated using a similarity solution in
the absence of thermal and compressibility effects. Define x to be the distance
along the plate and y to be the distance from the surface of the plate and ν to
be the kinematic viscosity and U = Mc is the incident velocity (refer to figure
7). The similarity variable η is given by

η = y

√

U

νx
(12)

This reduces the equations to a nonlinear ordinary differential equation, the
solution of which is the familiar Blasius boundary layer. See Schlichting [26] or
White [32] for a full exposition of this derivation. Charest, et al. [6], present a
low-Mach number algorithm for steady state calculations. In this calculation,
they present a boundary layer calculation that reproduces the behavior Blasius
layer. Berger, et al. [5] present a wide variety of these calculations.

We cut a rectangular grid with a wedge of angle θ. Refer to figure 8 and table
9 for the initial and boundary conditions. The density and temperature are set to
constants ρ = ρ0, T = T0 = P0/(RT0). The velocity is set to (U cos(θ), U sin(θ))
everywhere. The velocity boundary conditions are inflow-outflow left to right
(the top boundary is an outflow boundary). The boundary conditions at the
embedded boundary begin as slip conditions and become no-slip to simulate
the start of the semi-infinite plate (the cross-hatched region of the figure 8.
Our inflow Mach number is set to M = 0.2 and the viscosity is set to make
a Reynolds number ReL = 30000. Temperature boundary conditions top and
bottom are insulated; at the inflow T = T0. We present two calculations, both
with a base grid of 256x256. We refine near the boundary by a factor of 16 (four
levels of refinement, each factor of two) to make an effective resolution near the
boundary of 4096x4096.. The solution is allowed to run to steady state. We cast
rays into the fluid at every point along the boundary within the local Reynolds
number ranges 5000 < Rex < 15000. In figure 9, we present a scatter plot of
the normalized velocity vs. the similarity variable η. We compare our results
to the Blasius profile. We show good agreement with the similarity solution.
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U

x

y

u

Figure 7: Formulation of semi-infinite flat plate boundary layer problem. U
is the (constant) inflow velocity, x is the distance along the plate and y is the
distance above the plate.
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U = M c

θ

D

D

W
L

Figure 8: Initial and boundary conditions for boundary layer calculation.
The density and temperature are set to constants. The velocity is set to
(U cos(θ), U sin(θ)) everywhere. The embedded boundary cuts the grid at an
angle θ from the bottom of the domain. The no-slip condition for velocity is
only in effect in the crosshatched region. Values for all these quantities are given
in 9.

24



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7  8  9

|u
|/(

M
c)

η

nxf=4096
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Figure 9: Results of boundary layer calculation as compared with the Blasius
solution. This is a scatter plot of normalized velocity vs. the similarity variable
η at two different resolutions. The magnitude of solution velocity is |u|, c is the
sound speed and the similarity variable η is defined in equation 12. The Blasius
solution is in blue. The solution with effective resolution of 4096x4096 is in red.
We cast a ray from every point along the boundary where the local Reynolds
number is in the range 5000 < Rex < 15000. We plot every point along every
ray. The rays are 30 points long.
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p0 2.4e5 Pa

ρ0 1.0 kg/m
3

L 3.0 m
D 8.0 m
W 4.0 m
M 0.2
γ 5

3

µ 1.2649e-2 kg/(m s)
λ -8.4327e-3 kg/(m s)
Cv 5.00e2 J/(kg K)
ξ 1.7e-2 W/(m K)

ReL 3.0e4 W/(m K)
θ 5o

Table 9: Initial conditions for the boundary layer calculation. The velocity
everywhere is initialized to (Mc cos(θ),Mc sin(θ). See figure 8 for variable defi-
nitions.
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9 Shock Reflection

Define M to be the Mach number of a shock propagating into a gas at rest.
Glaz, et al. [14] present a comparison between inviscid calculations of shock
reflections and experimental results. They show a case where viscous effects
cause substantial changes in the reflection pattern. For M = 7.1 shock reflection
from a 49 degree wedge, they show that the Mach stem is much shorter in the
experiment than in an inviscid calculation. The reason cited for this difference is
that the viscosity of argon varies strongly with temperature and the temperature
behind the shock is quite high (the initial temperature behind the diaphragm is
10265K). The viscosity is approximated to vary with the Sutherland’s power law
(dynamic viscosity varies with T 3/2). We use the viscosity shown in table 10.
We compute this viscosity using the highest value given in [22] and extrapolating
to the initial high temperature. The specific heat and conductivity of argon are
left at the room temperature values. These approximations are sufficient to
illustrate the phenomenon.

Refer to figure 10 for an illustration of the initial conditions. Table 10 has
the numerical values of the inputs. Both calculations have a 128x64 base grid
with seven levels of adaptive mesh refinement, all by a factor of 2. This makes
the effective resolution 16384x8192. All embedded boundary cells are refined to
the finest level. This gives resolution at the boundary layer h = 9.1 microns.

Figure 11 illustrates the Mach reflection problem. Figures 13 and 12 show
the viscous and inviscid calculations at the same scale after 9.61 µs. The vis-
cous calculation shows an interesting shock-boundary layer interaction which is
magnified in figure 16. The shock reflects off of the boundary layer, creating a
separation bubble. This is followed by a compression (from the reflected shock)
and boundary layer reattachment. For steady shocks interacting with laminar
boundary layers, this is the classical lambda shock phenomenon. Both Schlicht-
ing [26] and Liepmann et al. [21] explain this in detail and include a wealth
of experimental images. This is also observed (albeit barely) in the experiment
presented in [14]. The interferogram they show has only two or three density
contours in that region which makes the feature difficult to see.

Figures 13 and 12 clearly show that the viscous boundary layer has reduced
the Mach stem substantially and a density stratification on the left. Recall
that the problem is configured as a shock tube. The initial conditions are zero
velocity with a discontinuity in pressure and density. As the shock moves to
the right, a rarefaction fan moves to the left, producing this density variation.
We show the two shock reflection patterns more closely in figures 15 and 14.
For a quantitative look at this reduction, we refer to the experimental and
computational results in [14]. See figure 11 for an illustration of the relevant
lengths. The ratio of the Mach stem length LM to the shock distance LR is the
quantity of interest:

Rm =
Lm

LR
.

Glaz et al. report a value of Rm = 0.07 in their inviscid calculation and Rm =
0.038 for an experimental result (see figure 10 in [14]). Our inviscid calculation
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has Rm = 0.072 and our viscous calculation has Rm = 0.03. We believe that
our agreement is reasonable since not all the experimental setup information
is available (the time at which the interferogram is taken, for example, is not
available). For more examples of this viscous effect, see Henderson, et al. [17].
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p0 1.95e3 Pa
p1 7.42e5 Pa

ρ0 3.29e-2 kg/m
3

ρ1 3.61e-1 kg/m
3

X1 9.0e-2 m
X2 1.0e-1 m
X3 1.5e-1 m
Y3 7.50e-2 m
µ 1.21e-3 kg/(m s)
λ -8.08e-4 kg/(m s)
Cv 3.00e2 J/(kg K)
ξ 1.7e-2 W/(m K)
θ 49o

γ 5
3

Table 10: Initial condition setup for shock reflection problem. The initial veloc-
ity is zero. See figure 10 for variable definitions.
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Figure 10: Shock tube setup. The initial velocity is zero. The initial pressures
and densities are tailored to make a M = 7.1 shock. See table 10 for details.
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Figure 11: Shock reflection illustration. The ratio of the Mach stem length LM

to the shock distance LR is the quantity of interest.
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Figure 12: Mass density (kg/m3) in the inviscid calculation of M = 7.1, 49o

shock reflection at 9.6 µs.This calculation was run 128x64 base grid with seven
levels of adaptive mesh refinement, all by a factor of 2. This makes the effective
resolution 16384x8192. All embedded boundary cells are refined to the finest
level. This gives resolution at the boundary layer h = 9.1 microns.

31



Figure 13: Mass density (kg/m3) in the viscous calculation of M = 7.1, 49o

shock reflection at 9.6 µs. This calculation was run 128x64 base grid with seven
levels of adaptive mesh refinement, all by a factor of 2. This makes the effective
resolution 16384x8192. All embedded boundary cells are refined to the finest
level. This gives resolution at the boundary layer h = 9.1 microns.
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Figure 14: Mass density (kg/m3) in the inviscid calculation of M = 7.1, 49o

shock reflection at 9.6 µs, zoomed in (to the same degree as figure 15) to show
the reflection pattern.
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Figure 15: Mass density (kg/m3) in the viscous calculation of M = 7.1, 49o

shock reflection at 9.6 µs, zoomed in (to the same degree as figure 14) to show
the reflection pattern.
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Figure 16: Magnification of the lambda shock-boundary layer pattern in the
viscous calculation. Density (in kg/m3) shown here.
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10 Conclusion

We present a stable, second-order method for solving the two and three dimen-
sional compressible Navier-Stokes equations in the presence of complex geome-
tries. This semi-implicit method advances parabolic terms implicitly and hyper-
bolic terms explicitly. This allows a time step controlled by the CFL constraint
associated with the hyperbolic wave speeds. We demonstrate second order ac-
curacy for smooth initial conditions in smooth geometric configurations and ro-
bust behavior in the presence of strong discontinuities and geometric complexity
that mimic the conditions in a plasma wakefield accelerator in the absence of
magnetic or ionization effects. We also show good quantitative agreement with
experimental results in a viscous shock reflection problem and a boundary layer
problem.
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