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This article is concerned with the formulation and numerical solution of equations
for modelling multicomponent, two-phase, thermal fluid flow in porous media. The
fluid model consists of individual chemical component (species) conservation equa-
tions, Darcy’s law for volumetric flow rates and an energy equation in terms of
enthalpy. The model is closed with an equation of state and phase equilibrium con-
ditions that determine the distribution of the chemical components into phases. It
is shown that, in the absence of diffusive forces, the flow equations can be split
into a system of hyperbolic conservation laws for the species and enthalpy and a
parabolic equation for pressure. This decomposition forms the basis of a sequential
formulation where the pressure equation is solved implicitly and then the com-
ponent and enthalpy conservation laws are solved explicitly. A numerical method
based on this sequential formulation is presented and used to demonstrate some
typical flow behaviour that occurs during fluid injection into a reservoir.
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1. Introduction

This article is concerned with the mathematical formulation and numerical solution
of systems of partial differential equations for multicomponent, two phase flow in
porous media that include thermal effects. The latter are important in the numer-
ical simulation of enhanced oil recovery processes such as steam flooding and in

situ combustion. Relevant methodologies have been reported in recent papers by
Liu et al. (2007), Huang et al. (2007), Pasarai et al. (2005), Nilsson et al. (2005)
and Christensen et al. (2004). Thermal process simulation also plays an important
role in the modelling of geothermal reservoirs (the reader is referred to the recent
survey by O’Sullivan et al. 2001). Modelling the behaviour and evaluating cleanup
strategies for contaminants can also require the treatment of thermal processes, see
for example Class et al. (2002) and the references cited therein for a survey of this
type of application.

The development of solution methodologies for the simulation of complex sub-
surface thermal processes often leads to a compromise between accuracy and stabil-
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2 D.E.A. van Odyck et al.

ity. Many of these thermal processes are characterised by sharp fronts propagating
through the medium, which places stringent requirements on spatial and temporal
resolution. However, the simulations also rely on an accurate coupling of a number
of different processes, which places stringent requirements on process coupling and
stability. The trend in recent years has been to place an emphasis on stability rather
than spatial accuracy. Consequently, most approaches to thermal simulations are
based on a fully-implicit formulation with lower-order implicit spatial differencing.
Most of the approaches in the literature cited above are based on this type of strat-
egy. It is also worth mentioning the work of Christensen et al. (2004) and Nilsson
et al. (2005), who utilise adaptive mesh techniques to improve spatial resolution.

The goal of the present work is to develop an algorithm for modelling multi-
phase, multicomponent non-isothermal reacting flows that achieves a better balance
between stability and accuracy. As part of this development, we will examine the
mathematical structure of these types of flows which provides the basis for apply-
ing contemporary high-resolution upwind methodology in this context. Examples
of this type of approach for the black-oil model are discussed in Bell et al. (1989).
Similar types of discretization procedures are considered for compositional models
in Mallison et al. (2003).

The approach taken here was used previously to analyse the structure of black-oil
(Trangenstein & Bell 1989a) and compositional (Trangenstein & Bell 1989b) mod-
els for reservoir simulation. It represents a generalisation of the classical derivation
of the Buckley-Leverett equation, see for example Peaceman (1977). As in the de-
velopment of compositional models by Trangenstein & Bell (1989b) the following
analysis relies heavily on the mathematical structure of the multiphase multicom-
ponent phase behaviour. The treatment of phase behaviour for non-isothermal sys-
tems using an optimisation framework is discussed in Brantferger (1991a) as part of
the development of a fully implicit thermal-compositional solver and in Michelsen
(1999).

The rest of the paper is structured as follows. In section 2, we review the ba-
sic equations for multiphase, non-isothermal flow in porous media and discuss the
structure of the phase equilibrium problem. In section 3 the sequential splitting of
the flow equations is introduced. This sequential form separates the system into a
parabolic pressure equation and a system of conservation laws for the chemical con-
stituents of the fluid and the enthalpy of the rock / fluid system. We show in section
4 that, in the absence of capillary pressure and diffusive transport, this system of
conservation laws is hyperbolic. We develop a numerical algorithm based on this
formulation in section 5. Finally we present numerical results based on the sequen-
tial formulation that illustrate the behaviour of the interacting waves encountered
in the system. These examples serve to validate the sequential formulation and
illustrate the types of wave behaviour associated with this type of system.

2. Mathematical formulation

In this section, we present the basic flow equations describing non-isothermal, mul-
tiphase, multicomponent flows in heterogeneous porous media. The porosity of the
medium is denoted by φ, and the phase volume of each phase per pore volume is
denoted uα. Greek subscripts refer to mobile phases. (The medium itself, which can
be viewed as a solid phase is given a distinguished treatment since it is immobile.)
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The multicomponent mixture is composed of N components (or lumped pseudo-
components) and we define nα as the vector of moles of each component in phase
α divided by the pore volume. Thus,

∑

α nα ≡ n is the total number of moles per
pore volume of these components in the combined fluid system. (Mineral content
of the solid is, of course, important for geochemistry but is not included in these
definitions.)

Flow equations

The flow is governed by the equations of mass and energy conservation and by
Darcy’s law, which gives the volumetric flow rate, ~vα, of each phase in terms of the
phase pressure, pα

~vα = −Kkr,α

ηα

(∇pα − ρα~g) ≡ −λα(∇pα − ρα~g) (2.1)

where K is the permeability of the medium, kr,α is the relative permeability, which
expresses the modification of the flow rate from multiphase effects, ηα and ρα are
the phase viscosity and density, respectively, and ~g is the gravitational force. Here
λα ≡ Kkr,α/ηα is the phase mobility. The pressure in each phase is related to a
reference pressure, p (typically taken to be the most wetting phase), by a capillary
pressure, pc,α = pα − p, which is a function of saturation.

Conservation of mass for each component is given by

∂(φn)

∂t
+ ∇ ·

∑

α

nα

uα

~vα = ∇ ·D + Rn (2.2)

Here D are diffusive terms that include multiphase molecular diffusion and disper-
sion and Rn are reaction terms. Both the diffusion and reaction terms can be quite
complex, depending on the particular problem, see for example Chen et al (2006)
for a detailed discussion of these terms.

For non-isothermal systems it is necessary to include the energy conservation
in the system of equations. The overall energy balance must include energy in the
solid phase. If we assume that the porous medium and the fluids are in thermal
equilibrium, the energy balance is of the form

∂Ht

∂t
+ ∇ ·

∑

α

~vα

uα

nα
T
hα = ∇ · ~q + RH , (2.3)

where Ht = (1 − φ)ρrHr + φ
∑

α nα
T
hα is the total enthalpy of the system, hα

are the partial molar phase enthalpies, Hr the enthalpy of the medium and ρr

the density of the medium. Here ~q represents diffusive energy transport processes
such as thermal conduction and RH represents energy release from reactions and
external heating. If one does not assume the porous medium and the fluid are
in thermal equilibrium, RH will contain relaxation terms that equilibrate the two
temperatures. In the above formulation we have omitted a term from the right hand
side of the form

∂
∑

α pαuα

∂t
+
∑

α

~vα · ∇pα .
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4 D.E.A. van Odyck et al.

Omitting this term implicitly assumes that the change in phase pressures is slow
so that these terms can be ignored. We note that formulations based on internal
energy make a similar assumption by dropping a term of the form

∑

α

~vα · ∇pα

from the energy equation. For a more detailed derivation and discussion, the reader
should refer to Burger et al (1985).

Phase behaviour

The component conservation and energy equations express the change in total
mass of each component due to advection, diffusion and chemical reactions. Since
components are being transported in phases, it is necessary to know the composition
of the phases before we can solve the flow equations. This decomposition is referred
to as the phase behaviour of the system. The phase behaviour is determined by
saying that the equilibrium state of the mixture occurs at the point of maximum
entropy. The entropy of the phases is derived from the chemical potential µα. These
chemical potentials are typically specified in terms of an equation of state to model
the dependence of pressure on temperature, composition and specific volume of
the phase. For a more detailed discussion see Michelson & Mollerup (2004) and
Brantferger et al. (1991b).

The chemical potentials µα are functions of pα, T , and phase composition nα.
Note that we have preserved the role of capillary pressure in determining the ther-
modynamic behaviour of the system. One simplification is to define the thermody-
namics in terms of the reference pressure and retain capillary pressure effects only
in the definition of phase velocities, see Brantferger et al. (1991b). Furthermore
the major thermodynamic variables describing each phase can all be expressed in
terms of the phase’s chemical potential. In particular, the partial molar entropies
are given by

sα = −
(

∂µα

∂T

)

xα,pα

(2.4)

where xα = nα/eT
nα are the mole fractions, e = (1, 1, .., 1)T , and the partial molar

enthalpies are given by

hα = (µα + T sα) . (2.5)

Here the phase equilibrium problem is to determine the composition of the
phases nα given the total moles n, pressure P and the total enthalpy Ht. The
equilibrium distribution of the components is given by minimising the negative
entropy of the system. In a two-phase liquid and vapour case this becomes

min
[

−S = −(nT
l sl + n

T
v sv)

]

subject to

n = nl + nv

and

Ht = (1 − φ)ρrhr + φ(nT
l hl + n

T
v hv)
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Mathematical structure porous media flow 5

along with inequality constraints (nα ≥ 0) guaranteeing non-negativity of the com-
positions and thermal stability of the fluid (nα

T ∂hα

∂T
> 0). As noted above, if we do

not consider the solid and the fluids to be in thermal equilibrium then we hold the
total fluid enthalpy, Hf = n

T
l hl + n

T
v hv, constant rather than the total enthalpy.

Treatment of this minimisation problem, i.e. the so-called isenthalpic flash calcu-
lation, has been presented in the literature (Michelsen & Mollerup (2004); Michelsen
(1999); Brantferger (1999a)) and will not be discussed in detail here. There are,
however, a couple of key observations about the structure of the minimisation that
will play a role later in the development of the sequential discretization. Firstly,
the Hessian of the negative entropy is a rank one perturbation of the Hessian of
the Gibbs free energy, which is minimised in an isothermal flash calculation. Con-
sequently, it is computationally simple to compute one of theses matrices given the
other. Secondly, at equilibrium the chemical potentials are equal, i.e.,

1

T
µl(xl, T, pl) =

1

T
µv(xv, T, pv) (2.6)

Here, the chemical potentials are typically specified in terms of mole fractions rather
than moles; however, we can use the definition of mole fractions to express them in
this form.

In addition to determining the composition of the phases and the temperature,
the phase behaviour also determines the properties of the phases. In particular,
given pressure, temperature and component mass densities, we can compute the
volume occupied by the phases. To complete the mathematical formulation of the
system we require that the sum of the phase volumes match the available pore
volume, which we will represent as

1 = U(p, T,n) =
∑

α

uα(pα, T,nα) . (2.7)

This equation plays the role of an equation of state that constrains the evolution
of the component conservation and energy equations. Here we have implicitly used
the capillary pressure to relate the phase pressures to the reference pressure.

3. The sequential formulation

In this section we present a sequential formulation of the above thermal / compo-
sitional model. This approach, based on a total velocity splitting with a pressure
equation determined by differentiating the equation of state (2.7) was first intro-
duced by Acs & Dolschal (1985). The methodology introduced here follows the
development in Trangenstein & Bell (1989b) and, as such, represents a generalisa-
tion of that work to a non-isothermal setting. As in Brantferger (1991a), we will
use pressure, total enthalpy and molar densities as the primary unknowns. The use
of enthalpy as a primary unknown instead of temperature reflects its role as the
conserved variable in the energy equation. This choice also avoids issues related to
the Gibbs phase rule that can occur if there are more phases than components, in
which case pressure and temperature cannot vary independently. However, it also
introduces some complexity because many of the thermodynamic variables are given
in terms of the temperature, T . In particular, the functional form of the enthalpy
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is given by

Ht = Ht(n, T, p) . (3.1)

We view this relationship as implicitly defining the temperature as a function of
the molar densities, pressure and the enthalpy. We also note that for some of the
analysis it will be convenient to derive an equation for temperature; however, in
the numerical method, the enthalpy is the quantity that is advanced in time.

Formally, the dynamics evolves conservation equations for the chemical compo-
nents and energy with phase velocities given by Darcy’s law. The entire evolution
is constrained by the equation of state.

Pressure equation

As in Acs & Dolshal (1985) and Trangenstein & Bell (1989b), we first derive
a pressure equation to satisfy the total volume balance by taking the first order
Taylor expansion in time of the pore volume constraint (equation of state)

1 = U(t + δt) = U(t) + ∆t
∂U

∂t
+ O(∆t2) . (3.2)

Using the functional dependence of U on n, p and Ht, we can express the constraint
as

(

∂U

∂p

)

n Ht

∂p

∂t
+

(

∂U

∂n

)

p Ht

∂n

∂t
+

(

∂U

∂Ht

)

n p

∂Ht

∂t
=

1 − U(t)

∆t
(3.3)

The pressure equation expresses how the pressure needs to change to enforce the
equation of state, (2.7). Because of splitting errors, U is not necessarily unity at
time t and the right hand side includes a forcing term that attempts to correct
errors from previous times. It is more natural to rewrite equation (3.3) in terms
of (T, p,n) since many of the thermodynamic quantities are explicit functions of
(T, p,n). Relationships between the partial derivatives can be derived by inverting
the Jacobian matrix of the change of variables from (Ht, p,n) to (T, p,n). This
transformation is described in detail in appendix A. Using this transformation, we
can rewrite equation (3.3) as

−
(

φ
(

∂U
∂p

−
(

∂Ht

∂T

)−1 ∂U
∂T

∂Ht

∂p

)

− dφ
dp

(

∂U
∂n

−
(

∂Ht

∂T

)−1 ∂U
∂T

∂Ht

∂n

)

n

)

∂p
∂t

=
(

∂U
∂n

−
(

∂Ht

∂T

)−1 ∂U
∂T

∂Ht

∂n

)

∂(φn)
∂t

+ φ
(

(

∂Ht

∂T

)−1 ∂U
∂T

)

∂Ht

∂t
− φ (1−U(t))

∆t

(3.4)

where we have dropped the indices that indicated which variables are constant in
the partial derivatives since it is always some combination of p, T and n.

If we use the evolution equations for enthalpy and molar densities to substitute
for the time derivatives on the right hand side of (3.4) we obtain the pressure
equation

−
(

φ
(

∂U
∂p

−
(

∂Ht

∂T

)−1 ∂U
∂T

∂Ht

∂p

)

− dφ
dp

(

∂U
∂n

−
(

∂Ht

∂T

)−1 ∂U
∂T

∂Ht

∂n

)

n

)

∂p
∂t

=

−
(

∂U
∂n

−
(

∂Ht

∂T

)−1 ∂Ht

∂n
∂U
∂T

)

(∇ ·
∑

α
~vα

uα
nα −∇ · D − Rn)

−φ
(

∂Ht

∂T

)−1 ∂U
∂T

(∇ ·
∑

α
~vα

uα
n

T
αhα −∇ · ~q − RH) − φ (1−U(t))

∆t

(3.5)
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If we now express the phase velocities in terms of the pressure gradient, we obtain

−
(

φ
(

∂U
∂p

−
(

∂Ht

∂T

)−1 ∂U
∂T

∂Ht

∂p

)

− dφ
dp

(

∂U
∂n

−
(

∂Ht

∂T

)−1 ∂U
∂T

∂Ht

∂n

)

n

)

∂p
∂t

=
(

∂U
∂n

−
(

∂Ht

∂T

)−1 ∂U
∂T

∂Ht

∂n

)

(∇ ·
∑

α
nαλα

uα
(∇p + ∇pc,α − ρα~g) −∇ · D − Rn)+

φ
(

∂Ht

∂T

)−1 ∂U
∂T

(∇ ·
∑

α

nT
αhαλα

uα
(∇p + ∇pc,α − ρα~g) −∇ · ~q − RH) − φ (1−U(t))

∆t

(3.6)
This expresses the pressure equation in a form that is formally parabolic. A more
detailed analysis of this equation is given below.

Component and energy conservation equations

In the incompressible case where φ and U are independent of pressure, it is
possible to define the notion of a “total velocity” that allows us to decompose
the dynamics into an elliptic pressure equation and, ignoring diffusion, a system
of hyperbolic conservation laws. To preserve this behaviour in the more general
compressible case we again split the equations by computing the total velocity
~vT. We can then re-express the phase velocities in terms of the total velocity and
eliminate the explicit dependence of the phase velocities on the pressure gradient
in the conservation equations. First we define ~vT as

~vT ≡
∑

α

~vα = −
∑

α

λα(∇pα − ρα~g) . (3.7)

Then solving for ∇p in terms of ~vT, we express the phase velocity in terms of the
total velocity,

~vα =
λα

λT
~vT + λα(ρα −

∑

β

λβρβ

λT
)~g − λα(∇pc,α −

∑

β

λβ∇pc,β

λT
) , (3.8)

where λT =
∑

α λα is the total mobility. Finally writing the conservation equa-
tions in terms of the total velocity yields the fractional flow form of the chemical
component conservation equations

∂(φn)

∂t
+ ∇ ·

∑

α

nα

uα





λα

λT
~vT + λα(ρα −

∑

β

λβρβ

λT
)~g



 =

∇ ·
∑

α

nα

uα

λα(∇pc,α −
∑

β

λβ∇pc,β

λT
) + ∇ · D + Rn . (3.9)

and a fractional flow form of the energy conservation equation,

∂Ht

∂t
+ ∇ ·

∑

α

nα
T
hα

uα





λα

λT
~vT + λα(ρα −

∑

β

λβρβ

λT
)~g



 =

∇ ·
∑

α

nα
T
hα

uα

λα(∇pc,α −
∑

β

λβ∇pc,β

λT
) + ∇ · ~q + RH . (3.10)

In this form the component conservation and energy equations form a system of
nonlinear advection-diffusion equations where the diffusion is typically small relative
to the advection.
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4. Analysis of the sequential formulation

In the limit of no capillary pressure, diffusion or reactions, the sequential formula-
tion discussed above splits the dynamics into a formally-parabolic pressure equation
and a system of first-order conservation laws for the component conservation and
energy equations. For this decomposition to be well-posed, we need to show that
the pressure equation is, in fact, parabolic and show that the conservation laws
for components and energy form a hyperbolic system. The wave structure associ-
ated with the hyperbolic system is also useful in the construction of high-resolution
discretizations.

Thermodynamic derivatives

The structure of the equations is tightly coupled to the phase behaviour. Conse-
quently, we need to understand how perturbations in the state variables are reflected
in changes in the phase behaviour. In this section, we derive a number of useful re-
lationships that will be needed later in the analysis. For a more detailed discussion
of these derivations see Trangenstein & Bell (1989b) and Brantferger (1991a).

As in the case of the derivation of the pressure equation, the analysis is simplified
by treating perturbations of the system in terms of p, n and T rather p, n and Ht.
When T is fixed instead of Ht, phase equilibrium perturbations in n correspond to
minimization of the Gibbs free energy rather than negative entropy. However, the
similarity in structure of the different types of equilibrium computations makes it
easy to obtain the necessary structure about the isothermal flash and no additional
minimisation need occur.

From the phase equilibrium we define

M =
∂nl

∂n

∣

∣

∣

∣

T,p

, I − M =
∂nv

∂n

∣

∣

∣

∣

T,p

mT =
∂nl

∂T

∣

∣

∣

∣

n,p

, mT = − ∂nv

∂T

∣

∣

∣

∣

n,p

and

mp =
∂nl

∂p

∣

∣

∣

∣

n,T

, mp = − ∂nv

∂p

∣

∣

∣

∣

n,T

From the Gibbs-Duhem equation M is symmetric, Mnl = nl and Mnv = 0.
Since the phase potentials are equal at equilibrium, we can differentiate (2.6)

with respect to T to obtain

GmT =

(

∂µv

∂T

)

p nv

−
(

∂µl

∂T

)

p nl

=
1

T
(hl − hv) (4.1)

where

G =
∂µl

∂nl

+
∂µv

∂nv

Similarly,

Gmp =

(

∂µv

∂p

)

T nv

−
(

∂µl

∂p

)

T nl

= −(νl − νv)
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where να are the phase specific volumes.
Other useful thermodynamic relationships are a consequence of first-degree ho-

mogeneity. A thermodynamic property is homogeneous of first degree if a multi-
plication of the composition by a scalar changes the property by the same scalar.
Such quantities are typically expressed in the form

Ξα = n
T
αχα

and first degree homogeneity implies

n
T
α

∂Ξα

∂nα

= 0

First degree homogeneity holds for enthalpy, phase volumes, and phase specific
volumes.

Parabolicity of the pressure equation

Using these relationships we can now analyse the pressure equation and the
component conservation equations. Certain technical assumptions, which are typi-
cally true, are needed for the analysis. These additional assumptions will be noted
in the discussion. To analyse the pressure equation, we need to first show that the
coefficient multiplying ∂p

∂t
in (3.6),

−φ

(

∂U

∂p
−
(

∂Ht

∂T

)−1
∂U

∂T

∂Ht

∂p

)

+
dφ

dp

(

∂U

∂n
−
(

∂Ht

∂T

)−1
∂U

∂T

∂Ht

∂n

)

n

is positive.
Mechanical and thermal stability of the fluid guarantee that

∂U

∂p
≤ 0

and
∂Ht

∂T
≥ 0

We expect that both ∂Ht

∂p
and ∂U

∂T
to be non negative. Thus, for validity of the

present model we need to assume that

∂U

∂p
−
(

∂Ht

∂T

)−1
∂U

∂T

∂Ht

∂p
≤ 0 (4.2)

It is mentioned (see for example O’Connell & Haile (2005)) that the thermal ex-
pansion coefficient α = 1

U
∂U
∂T

is in general positive for gases and liquids, except
for water under 4oC and at atmospheric pressure. For low density gases α ≈ 1

T

and it decreases with increasing pressure. For liquids α has values an order of
magnitude smaller then 1

T
and they are nearly constant over modest changes of

temperature and pressure. One can also derive, using the Maxwell relations, that
∂Ht

∂p
= U(1 − αT ) and thus for most liquids and gases ∂Ht

∂p
> 0 and ∂U

∂T
> 0.
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10 D.E.A. van Odyck et al.

Using first-degree homogeneity, the coefficient of dφ
dp

can be rewritten as

U − φ

(

∂Ht

∂T

)−1
∂U

∂T
Hf

since dφ
dp

≥ 0, we also need this term to be positive or dominated by the first term.
U is approximately 1, but there is not enough information to deduce the sign of
the RHS term. Thus, we need to assume that this term is positive as well or that
the medium is incompressible or that the compressibility is sufficiently small to
guarantee parabolicity of the pressure equation.

We must also show that the coefficient of the second-order term on the right
hand side of 3.6,

(

∂U

∂n
−
(

∂Ht

∂T

)−1
∂U

∂T

∂Ht

∂n

)

∇·
∑

α

nαλα

uα

∇p+φ

(

∂Ht

∂T

)−1
∂U

∂T
∇·
∑

α

n
T
αhαλα

uα

∇p ,

(4.3)
defines a second-order elliptic equation. First we note that

−
(

∂Ht

∂T

)−1 ∂U
∂T

∂Ht

∂n
∇ ·
∑

α
nαλα

uα
∇p + φ

(

∂Ht

∂T

)−1 ∂U
∂T

∇ ·
∑

α
nT

αhαλα

uα
∇p =

(

∂Ht

∂T

)−1 ∂U
∂T

∇ ·
[

−
∑

α
∂Ht

∂n
nαλα

uα
+ φ

∑

α
nT

αhαλα

uα

]

∇p+
(

∂Ht

∂T

)−1 ∂U
∂T

∇∂Ht

∂n
·
∑

α
λα

uα
nα∇p =

(

∂Ht

∂T

)−1 ∂U
∂T

∇∂Ht

∂n
·
∑

α
λα

uα
nα∇p

which is a lower order term that does not effect parabolicity. Thus, the leading
order term on the right hand side of the equation is

∂U
∂n

∇ ·
∑

α
nαλα

uα
∇p = ∇ · ∂U

∂n

∑

α
nαλα

uα
∇p −∇∂U

∂n
·
∑

α
nαλα

uα
∇p =

∇ · λT∇p −∇∂U
∂n

·
∑

α
nαλα

uα
∇p

Thus the leading term on the right hand side of the pressure equation is ∇ · λT∇p
so that right hand side of the pressure equation (3.6) is elliptic.

Hyperbolic structure

If we ignore the capillary pressure terms, the fractional flow form of the equa-
tions forms a nonlinear system of conservation laws for the enthalpy and the molar
densities. The capillary pressure terms introduce a nonlinear diffusion term that is
typically fairly small so that the behaviour of the system is typically transport dom-
inated. For incompressible two-phase, two-component systems the fractional flow
form of the equations reduces to the familiar Buckley-Leverett equation. For a solu-
tion and discussion see Collins (1961). The work of Trangenstein & Bell (1989a, b)
shows that for both the three-phase black-oil model and for a two-phase compo-
sitional model the conservation laws resulting from a total velocity splitting, form
a hyperbolic system in the limit of vanishing capillary pressure (subject to well-
posedness conditions on the three-phase fractional flow modelling in the black-oil
case). In this section, we demonstrate that the total velocity splitting leads to hyper-
bolicity in the compositional / thermal model as well. As in the case of isothermal
compositional flow, the hyperbolicity is directly linked to thermodynamic consis-
tency of the phase behaviour.
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In this analysis we look at the component conservation equations (2.2) and the
energy equation (2.3) in the absence of capillary pressure and other diffusion terms
as well as reactions. In the sequential formulation, we view the pressure and total
velocity as specifying a prescribed spatial dependence of the flux. In one space
dimension, we can write the conservation equations in the form

φ
∂n

∂t
+

∂(nlσl + nvσv)

∂x
= l.o.t. (4.4)

and
∂Ht

∂t
+

∂(nT
l hlσl + n

T
v hvσv)

∂x
= l.o.t (4.5)

where the

σα =
1

uα





λα

λT
vT + λα(ρα −

∑

β

λβρβ

λT
)~g · ~ex





represent the phase velocities and l.o.t denotes lower order terms that arise from
dependence of the flux on the spatial coordinate either directly or through the
spatial dependence on pressure and total velocity. These lower order terms do not
affect hyperbolicity.

To show that the system is hyperbolic, we need to show that the eigenvalues
of the linearised system, which correspond to wave speeds, are real. Although the
dependent variables are the molar densities and enthalpy, it is more natural to per-
form the characteristic analysis in terms of the molar densities and the temperature.
The characteristic structure can also be used to develop numerical discretization
for the conservation laws.

When we recast the equations in terms of n and T , we need to be able to
perturb the species at constant temperature, not at constant enthalpy. As noted
above, having already determined temperature from an isenthalpic flash calculation,
we note that an isothermal flash at that specified temperature will produce the same
phase compositions and will also satisfy equality of the phase potentials.

We can now linearize equation (4.4) ignoring lower order terms to obtain

φ
∂n

∂t
+

[

Mσl + (I − M)σv + nl

∂σl

∂n
+ nv

∂σv

∂n

]

∂n

∂x

+

[

(σl − σv)mT + nl

∂σl

∂T
+ nv

∂σv

∂T

]

∂T

∂x
= 0 (4.6)

Similarly, linearization of the enthalpy equation without lower order terms leads
to

[

(1 − φ)ρr

∂Hr

∂T
+ φ(nT

l

∂hl

∂T
+ n

T
v

∂hv

∂T
+ (hT

l − h
T
v )mT )

]

∂T

∂t

+

[

σln
T
l

∂hl

∂T
+ σvn

T
v

∂hv

∂T
+ (σlh

T
l − σvh

T
v )mT + n

T
l hl

∂σl

∂T
+ n

T
v hv

∂σv

∂T

]

∂T

∂x

+

[

σlh
T
l M + σvh

T
v (I − M) + n

T
l hl

∂σl

∂n
+ n

T
v hv

∂σv

∂n

]

∂n

∂x

+φ
[

h
T
l M + h

T
v (I − M)

] ∂n

∂t
= 0 (4.7)
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12 D.E.A. van Odyck et al.

where we have used homogeneity of degree 1 of the partial molar enthalpies. We
now substitute for ∂n

∂t
in equation (4.7) to obtain

cp

∂T

∂t
+
[

(σl − σv)(hT
l − h

T
v )M(I − M)

] ∂n

∂x

+

[

σln
T
l

∂hl

∂T
+ σvn

T
v

∂hv

∂T
+ (hT

l − h
T
v )(σl(I − M) + σvM)mT

]

∂T

∂x
= 0 (4.8)

where

cp = (1 − φ)cr
p + φcf

p = ((1 − φ)ρr

∂hr

∂T
+ φ(nT

l

∂hl

∂T
+ n

T
v

∂hv

∂T
+ (hT

l − h
T
v )mT ))

Here we have used Mnl = nl and Mnv = 0. (The definition of cp above does not
correspond to a standard definition of specific heat at constant pressure because it
includes a mass scaling.)

The system can now be re-written in the following form

[

φ 0

0 cp

](

n

T

)

t

+ A

(

n

T

)

x

= 0 (4.9)

where A is

A =

( [

Mσl + (I − M)σv + nl
∂σl

∂n
+ nv

∂σv

∂n

]

[

(σl − σv)(hT
l − h

T
v )M(I − M)

]

[

(σl − σv)mT + nl
∂σl

∂T
+ nv

∂σv

∂T

]

[

σln
T
l

∂hl

∂T
+ σvn

T
v

∂hv

∂T
+ (hT

l − h
T
v )(σl(I − M) + σvM)mT

]

)

Hyperbolicity depends on A having real eigenvalues. There are two cases to con-
sider, one in which only one phase is formed and a second in which both phases
are formed. Before discussing these cases, we note that in specifying the system, we
have overdetermined the system. One could, for example, eliminate one of the mo-
lar densities from the system and solve for the missing variable from the equation
of state using the pressure, temperature and other densities. However, because of
the splitting errors this approach is not conservative. By carrying all of the molar
densities and Ht we are carrying some redundant information. This redundancy
manifests itself as a fictitious wave that essentially only carries information about
the consistency of the over specified system. In the present case, following Trangen-
stein & Bell (1989b), we have defined the decomposition so that the fictitious wave
moves with zero speed.

Single phase fluid

For the case of single phase flow, which we arbitrarily pick to be liquid here, the
matrix A takes the form

A =

(

(I − n
ul

∂ul

∂n
) − 1

ul

∂ul

∂T
n

0 n
T ∂hl

∂T

)

vT

ul

(4.10)

where nl = n. The upper left hand corner is a rank one perturbation of the identity
matrix. This corresponds to a projection onto the space orthogonal to n since
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∂ul

∂n
nl = ul which follows from the homogeneity of degree one of the phase volumes.

This corresponds to the fictitious wave that reflects the redundancy in the equation.
Thus, A has a single eigenvalue of 0 corresponding to a right eigenvector (n, 0) and
N−1 eigenvalues of vT

ul
corresponding to right eigenvectors (n⊥, 0) with ∂ul

∂n
n
⊥ = 0.

Given the scaling in (4.9) this corresponds to wave speeds of vT

φul
.

The eigenvalue corresponding to the lower right hand corner of A is cf
p

vT

ul
with

eigenvector (αnl, 1)T where α = − 1

ulc
f
p

∂ul

∂T
. Given the scaling in (4.9) this corre-

sponds to a wave speed of
cf

p

cp

vT

ul
. This implies that the thermal wave will be lagged

as a result of the heat capacity of the medium. We also note that in the case in which
the fluid and the porous medium are not assumed to be in thermal equilibrium, the
thermal wave speed is vT

φul
.

(i) Two phase fluid

The characteristic analysis of the two-phase flow case requires showing that
A can be transformed into a symmetric matrix. This is not straightforward but
the derivation can be considerably simplified by noticing that since we are doing
the characteristic analysis in terms of n and T , the upper left hand corner of A
corresponds to the quasilinear form of the molar conservation equations in the
compositional model analysed by Trangenstein & Bell (1989b). This motivates the
following similarity transformation of A:

Ã =

(

R−1
M 0

0 1

)

A

(

RM 0

0 1

)

,

where RM is the matrix of right eigenvectors of M so that

MRM = RMΛM ,

and ΛM is the diagonal matrix of eigenvalues.

Following Trangenstein and Bell, RM can be defined as:

RM =

(

nl

ul

,
nv

uv

, R̄M

)

In addition, we know that R−1
M nl = ule1, R−1

M nv = uve2 , and

ΛM =





1

0

ΛK̄



 .

We note that the eigenvectors corresponding to eigenvalues in ΛK̄ represent pertur-
bations in composition, δnl, that are split between liquid and vapour phases such
that

δnk = δnk,l + δnk,v

where
δnk,l = λkδnk
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14 D.E.A. van Odyck et al.

Stability of the mixture with respect to composition implies 0 ≤ λk ≤ 1 so that all
of the entries in ΛM are between zero and one. Applying this similarity transform
to A, yields:

Ã =

(

σlΛM + σv(I − ΛM ) + R−1
M (nl

∂σl

∂n
+ nv

∂σv

∂n
)RM

(σl − σv)(hT
l − h

T
v )RMΛM (I − ΛM )

(σl − σv)R−1
M mT + R−1

M (nl
∂σl

∂T
+ nv

∂σv

∂T
)

[

σln
T
l

∂hl

∂T
+ σvn

T
v

∂hv

∂T
+ (hT

l − h
T
v )(σl(I − M) + σvM)mT

]

)

Finally, Ã can be re-written:

Ã =





V Q b

0 Λ̄ c

0
T

d
T e



 , (4.11)

where

V =

(

σl 0

0 σv

)

+ ule1
∂σl

∂n
ND−1

u + uve1
∂σv

∂n
ND−1

u

Q = ule1
∂σl

∂n
R̄M + uve2

∂σv

∂n
R̄M

Λ̄ = σlΛK̄ + σv(I − ΛK̄)

b =

(

ul
∂σl

∂T
+ e

T
1 (σl − σv)R−1

M mT

uv
∂σv

∂T
+ e

T
2 (σl − σv)R−1

M mT

)

c = (σl − σv)PRR−1
M mT

d
T = (σl − σv)(hT

l − h
T
v )RMΛM (I − ΛM )PT

R

e = σln
T
l

∂hl

∂T
+ σvn

T
v

∂hv

∂T
+ (hT

l − h
T
v )(σl(I − M) + σvM)mT ,

and PR = [0,0, I] is a ((nc − 2) × nc) projection operator.

In Trangenstein & Bell (1989b), it was shown that there is a similarity transfor-
mation that diagonalises V , and its eigenvalues are real. One of these eigenvalues is
zero and corresponds to the fictitious wave. The other is ∂vv

∂Sv
where Sv = uv/(ul+uv)

is the vapour saturation. This corresponds to the Buckley-Leverett-type wave. We
now need to prove that there is a similarity transformation that symmetries the
sub-matrix:

Ãsub =

(

Λ̄ c

d
T e

)

from which we conclude that the eigenvalues of this sub-matrix should also be real.
Thus, all eigenvalues of Ã would be real and the hyperbolicity is proved.

Substituting h
T
l − h

T
v = Tm

T
T G into the expression for d

T , we obtain

d
T = T (σl − σv)mT

T GRMΛM (I − ΛM )PT
R

Next we make use of the the following result, which can be derived by using several
similarity transformations described in Trangenstein & Bell (1989b)

RT
MGRM = D2 ,

Article submitted to Royal Society



Mathematical structure porous media flow 15

where D is

D ≡





λl 0 0

0 λv 0

0 0 I





This result is then used to further re-write m
T
T GRM as

m
T
T GRM = m

T
T R−T

M RT
MGRM = m

T
T R−T

M D2 .

Ãsub has now become

Ãsub =

(

Λ̄ (σl − σv)PRx

T (σl − σv)x
T D2

sPT
R e

)

,

where Ds = D
√

ΛM (I − ΛM ), and x = R−1
M mT . Since the matrix

√

1
T

PRD−1
s PT

R

is non-singular, we can use it to define a final similarity transformation:

Âsub =





(√

1
T

PRD−1
s PT

R

)−1

0

0
T 1



 Ãsub

( √

1
T

PRD−1
s PT

R 0

0
T 1

)

,

which results in

Âsub =

(

Λ̄
√

T (σl − σv)PRDsx√
T (σl − σv)x

T DsP
T
R e

)

(4.12)

Âsub is a symmetric matrix, therefore it has real eigenvalues and the system of
linearised conservation laws is hyperbolic. This completes the derivation of hyper-
bolicity for the two-phase flow.

5. Discretization issues

In this section we present a numerical method for solving the thermal/compositional
model described above. The intent here is to use the method to elucidate some of the
wave phenomena associated with this type of system. For this reason we focus on
a simplified version of the model. We consider only one-dimensional flows without
gravity. We also assume that there is no capillary pressure or diffusive transport
and that there are no reactions. With these assumptions we solve the conservation
laws and the pressure equation on a uniform grid using a finite volume approach.
A mesh is defined in the (x, t)-plane. The computational domain is restricted to
x ∈ [0, L]. The points on the mesh are at locations (xi = i∆x, tn = n∆t) with

i = 0, .., Nx and n = 0, .., Nt. The discrete values of ~Q(x, t) at (i∆x + ∆x/2, n∆t)

will be denoted by ~Qn
i .

Pressure, enthalpy and component molar densities are defined on cell centres
and the total velocity is defined on cell faces. In outline semi-discrete form, the
algorithm for solving the conservation laws for components and enthalpy, equations
(3.9,3.10), and the pressure equation (3.6) looks like:

1. Given a solution at tn: (pn, Hn
t ,nn), calculate phase equilibrium and

hence (T n,nn
l ,nn

v , V n
l , V n

v , ...).
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16 D.E.A. van Odyck et al.

2. Solve pressure equation implicitly.

∂p

∂t
+ ... =

(1 − un
l − un

v )

∆t
+ ... gives pn+1

3. Calculate vT using pn+1.

4. Solve component and enthalpy conservation eqs.

∂n
∂t

+ ... = ... gives n
n+1

∂Ht

∂t
+ ... = ... gives Hn+1

t

5. Set (pn, Hn,nn) = (pn+1, Hn+1,nn+1) and go to STEP 1.

The different steps are described in more detail as follows:
Step 1: For the phase equilibrium calculation, an isenthalpic flash algorithm

developed by Michelsen (1999) is used. The algorithm currently considers the fluid
enthalpy, not the total enthalpy, in the minimisation of negative entropy, therefore
we have incorporated an outer iteration to solve the full minimisation problem. In
particular, we added an outer iteration to find T such that

Ht = (1 − φ) cr
p (T − T r

ref ) + φHf (5.1)

where Hf is at the minimum negative entropy. This nonlinear equation is solved
using the secant method. Details of this additional step are described in appendix
Appendix B.

Step 2: The pressure equation is treated implicitly, thus using a central-difference
approximation equation (3.5) becomes

[

φ∂U
∂p

]n

i

pn+1

i
−pn

i

∆t
+ 1

∆x2

[

∂U
∂n

]n

i

[

(
∑

α=l,v
nα

uα

Kkr,α

ηα
)n
i+ 1

2

(pn+1
i+1 − pn+1

i )−

(
∑

α=l,v
nα

uα

Kkr,α

ηα
)n
i− 1

2

(pn+1
i − pn+1

i−1 )
]

+ φ
[

∂U
∂Ht

]n

i

1
∆x2

[

(
∑

α=l,v
nT

αhα

uα

Kkr,α

ηα
)n
i+ 1

2

(pn+1
i+1 − pn+1

i ) − (
∑

α=l,v
nT

αhα

uα

Kkr,α

ηα
)n
i− 1

2

(pn+1
i − pn+1

i−1 )
]

= φn
i

1−Un
i

∆t

Quantities at the cell faces, i.e. (.)n
i+ 1

2

, are calculated as an average of their respec-

tive cell centre values (.)n
i+ 1

2

= 1
2 ((.)n

i + (.)n
i+1), hence no extra phase equilibrium

calculation is needed. The discretized system is solved with a tridiagonal matrix
solver.

Step 3: To calculate vT the variables at time n are used except for calculating
the pressure gradient in the definition of vT , for which the pressure at time n + 1
is used. Consequently, the total velocity is discretized as

[vT ]n
i+ 1

2

= [λT ]n
i+ 1

2

pn+1
i+1 − pn+1

i

∆x

Step 4: This is a system of hyperbolic equations and we have used a simple
first order (in time and space) conservative upwind scheme to solve it since our
numerical examples are designed in such a way that all the eigenvalues are positive.
Hence, the system of conservation laws

∂Q

∂t
+

∂(FvT )

∂x
= 0
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where

Q =

(

φn

Ht

)

, F =
1

λT

(

∑

α
λα

uα
nα

∑

α h
T
αnα

λα

uα

)

is discretized using the first-order Godunov approach

Qn+1
i = Qn

i − ∆t

∆x

(

[vT ]n
i+ 1

2

Fn
i+ 1

2

− [vT ]n
i− 1

2

Fn
i− 1

2

)

where strictly upwind fluxes are used

Fn
i+ 1

2

= Fn
i

The above forms a basis for higher order discretisations; we will present appro-
priate methodologies in a future communication.

6. Numerical examples

In order to give a more quantitative description of the types of waves that can
form in a realistic situations where flow velocities depend on pressure gradients,
four test cases are calculated. They correspond to particular situations occurring
during thermal recovery processes: hot gas, hot liquid and hot two-phase mixture
injection.

In all four test cases the following parameters are used: number of grid points
Nx = 400, reservoir length L = 7620.0 [cm], permeability κ = 2 ·10−8 [cm2], relative
permeability kr,α = s2

α, rock reference temperature T rock
ref = 293 [K], liquid viscosity

ηl = 0.001 [Pa · s], vapour viscosity ηv = 6 · 10−5 [Pa · s]. The values for other
parameters like binary interaction parameters and critical properties etc. used in
the Peng-Robinson equation of state can be found in Danesh (1998).

It is sometimes necessary to dampen the influence of the pressure correction
term in the pressure equation (3.6) by a factor fpress; e.g., use fpress · (1− ul − uv)
for the correction term. Normally we take fpress = 1. In Table (1) the values for
pressure correction factor fpress, time step ∆t and simulation time t are given.

The eigenvalues can be calculated in two ways. First, one can use the matrix A
defined in equation (4.9), rescaled by φ, Cp. The other option is to use matrix Ã in
equation (4.11). The eigenvalues of matrix V are zero and the Buckeley-Leverett
wave which is 1

φ U
∂vv

∂sv
. Subsequently, only the eigenvalues of the matrix Âsub in

equation (4.12) are needed. The second system is a two by two system and can
easily be solved analytically.

In the single phase case there are N − 1 essentially linearly degenerate waves
with wave speed vT

φul
and one linearly degenerate wave with wave speed zero. The

“energy” wave with wave speed vT

ulCp
n

T
l

∂hl

∂T
is also nearly linearly degenerate but

propagates at a reduced speed. If φ = 1 then the thermal wave speed is also vT

ul
.

In Figures 1, 2, 3 and 4 a number of quantities (component densities, total en-
thalpy, pressure, eigenvalues, total velocity, saturation and deviation of the equation
of state from unity) are presented as a function of position in the reservoir, for test
cases 1, 2, 3 and 4 respectively. The error in the equation of state, which takes the
form of a volume discrepancy, remains small in all cases as the calculations show.
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In Test 1 a hot vapour containing 95% methane, 4.9% butane 0.1% nonane is in-
jected into a liquid containing 20% methane, 20% butane, 60% nonane. The details
of the initial and boundary conditions of the reservoir are summarised in table 2.
The results are plotted in figure 1. The solution structure for this problem consists
of two discontinuous waves that connect the single phase vapour injection mixture
to the single phase liquid initially in the reservoir. The slower wave corresponds to
the transition from a single-phase region to a two-phase region. At these transition
regions, the flux function is not differentiable and there are discontinuous changes
in the eigenstructure. This type of structure is fundamentally different than the
behaviour of Buckley-Leverett because of mass-transfer effects between phases and
consequently, we do not see the long rarefaction associated with the simpler system.
The faster discontinuity is a shock wave from the λ1 family.

In Test 2 the same configuration as in Test 1 is considered but now with φ = 0.4.
The results are plotted in figure 2. The introduction of the rock heat capacity results
in significant changes in the flow field. The extent of the two phase region is much
larger and shows a typical Buckley-Leverett rarefaction-shock pattern in λ1 for x >
2000, [cm]. We again see a discontinuous wave separating the single-phase vapour
region from the two-phase region; however, in this case it is considerably slower.
Within the two phase region, we also see an additional weak wave at approximately
x = 1600, [cm]. The interaction between the waves inside the two-phase region is
also more complex. Inside the two-phase region the compound wave consists of a
constant state, a contact discontinuity and a rarefaction wave. We also note that
λ1 crosses the other waves at around x = 1000 [cm] indicating a loss of strict
hyperbolicity.

In Test 3 a hot liquid containing 10% methane, 20% butane 70% nonane is
injected into a liquid containing 80% methane, 10% butane, 10% nonane and the
details of the initial reservoir and boundary conditions are summarised in table 3.
The results are plotted in figure 3. This is a single phase liquid simulation. Because
of the presence of the porous medium there are two distinct wave speeds. This
results in a slow wave in the λ3 at around x = 1500 [cm] separated by a constant
state and followed by a faster wave at approximately x = 1500 [cm]. The faster wave
corresponding to λ1, λ2 is essentially a contact discontinuity. Curiously, the slower
wave is also essentially linearly degenerate. The structure in this case is carried
by the change in the total velocity and reflects a change in density resulting from
changes in compressibility as a function of temperature.

Test 4 is an example of a hot two-phase mixture containing 40% methane, 10%
butane, 50% nonane being injected into a colder two-phase mixture containing 80%
methane, 10% butane, 10% nonane. The details of the initial reservoir and bound-
ary conditions are summarised in table 3. The results, see figure 4, show a rather
complex behaviour. The hot two-phase mixture first condenses in a small region
ahead of the propagating hot front. This is a result of the lagged behaviour of the
thermal wave arising because of the heat capacity of the rock. The transition again
shows the compound wave behaviour typical of Buckley-Leverett. The mixture then
transitions back into a two-phase mixture with transition between phases accompa-
nied by another Buckley-Leverett shock. This multiplicity of waves is made possible
by the loss of strict hyperbolicity shown by the crossing of the eigenvalue curves.

Article submitted to Royal Society



Mathematical structure porous media flow 19

7. Summary and Conclusions

A system of equations describing the flow of non-isothermal multicomponent two-
phase fluids in a porous medium has been developed and analysed. The equations
governing the system are an extension of the compositional solver developed in
(Trangenstein & Bell 1989b). It is shown that the system of equations can be split
into a hyperbolic system of conservation laws for component density and enthalpy
and a parabolic pressure equation that constrains the volume of fluids to the avail-
able pore volume. This procedure of decoupling the fundamental equations forms
the basis of a sequential numerical algorithm. The sequential method is then applied
to study four test cases of multi-phase flows that can be encountered in thermal
recovery processes. They demonstrate that the method can resolve the interacting
waves present in the flow field and can shed new light into the understanding of
the solution structure. The analysis presented here can also form the basis for the
development of higher-order approaches for the component and energy conserva-
tion equations and for including additional physical phenomena such as capillary
pressure, diffusion and reactions.
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Appendix A. Partial Derivatives

It is simpler to define the partial derivatives of equation (3.3) at constant T than at con-
stant Ht since the equation of state is an explicit function of (T, p,n). Here, we present in

detail the transformation (based on change of variables) to to compute
“

∂U
∂p

”

n Ht

assuming

that
“

∂U
∂p

”

n T
is known, by using the fact that:

dU =

„

∂U

∂p

«

nHt

dp +

„

∂U

∂n

«

p Ht

dn +

„

∂U

∂Ht

«

n p

dHt (A 1)

Dividing equation (A1) by dp and taking T constant then gives
„

∂U

∂p

«

T

=

„

∂U

∂p

«

n Ht

+

„

∂U

∂n

«

p Ht

„

∂n

∂p

«

T

+

„

∂U

∂Ht

«

n p

„

∂Ht

∂p

«

T

(A 2)

Finally, if one also takes n constant, equation (A2) reduces to
„

∂U

∂p

«

n Ht

=

„

∂U

∂p

«

T n

−

„

∂U

∂Ht

«

n p

„

∂Ht

∂p

«

T n

(A 3)

Equation (A3) gives the required transformation to compute
“

∂U
∂p

”

n Ht

. A similar trans-

formation to compute
“

∂U
∂Ht

”

n p
can also be obtained by dividing equation (A1) by dT

and taking n and p constant
„

∂U

∂T

«

n p

=

„

∂U

∂Ht

«

n p

„

∂Ht

∂T

«

n p

(A 4)

With the help of the above expression, equation (A3) can now be rewritten as a function
of the primitive variables n, p and T and can be calculated explicitly.

„

∂U

∂p

«

n Ht

=

„

∂U

∂p

«

T n

−

„

∂Ht

∂T

«

−1

n p

„

∂Ht

∂p

«

n T

„

∂U

∂T

«

n p

(A 5)

In a similar way one can derive
„

∂U

∂n

«

p Ht

=

„

∂U

∂n

«

T p

−

„

∂Ht

∂T

«

−1

n p

„

∂Ht

∂n

«

p T

„

∂U

∂T

«

n p

(A 6)

and
„

∂U

∂Ht

«

p n

=

„

∂Ht

∂T

«

−1

n p

„

∂U

∂T

«

n p

(A 7)

In order to compute (A5), (A 6) and (A 7), the partial derivatives of Ht with respect
to T , p and n are required. Since Ht is the total enthalpy of the system, the enthalpy of
the surrounding rock should be taken into account. Therefore Ht can be expressed as:

Ht = (1 − φ)Hs + φHf , Hs = ρrHr , Hf = nT
l hl + nT

v hv (A 8)

Assuming that φ = φ(p) and Hs = Hs(T ), then the partial derivatives of Ht with respect
to the primitive variables now become:

„

∂Ht

∂T

«

n p

= (1 − φ)

„

∂Hs

∂T

«

n p

+ φ

„

∂Hf

∂T

«

n p

(A 9)

„

∂Ht

∂p

«

n T

= −
dφ

dp
Hs +

dφ

dp
Hf + φ

„

∂Hf

∂p

«

n T

(A 10)

„

∂Ht

∂n

«

p T

= φ

„

∂Hf

∂n

«

p T

(A 11)

Article submitted to Royal Society



22 D.E.A. van Odyck et al.

Appendix B. Secant Method

In order to solve equation (5.1) the Secant method is used. In the following the term flash

is used to refer to a phase equilibrium calculation at given (n, p). Given an initial enthalpy
H1 and temperature T1 the algorithm looks like:

H1
f = 1

φ
(H1 − (1 − φ) Crock

p (T1 − T rock
ref )

flash(H1
f ) → T̃

f1 = H1 − (1 − φ) Crock
p (T̃ − T rock

ref ) − φH1
f = (1 − φ) Crock

p (T1 − T̃ )
T2 = T1 + ∆T
H2

f = 1
φ
(H1 − (1 − φ) Crock

p (T2 − T rock
ref )

flash(H2
f ) → T̃

f2 = H1 − (1 − φ) Crock
p (T̃ − T rock

ref ) − φH2
f = (1 − φ) Crock

p (T2 − T̃ )

T3 = T2 −
(T2−T1)
(f2−f1)

f2

for l = 1 to Niter do
H3

f = 1
φ
(H1 − (1 − φ) Crock

p (T3 − T rock
ref ))

flash(H3
f ) → T̃

f3 = H1 − (1 − φ) Crock
p (T̃ − T rock

ref ) − φH3
f = (1 − φ) Crock

p (T3 − T̃ )

T4 = T3 −
(T3−T2)
(f3−f2)

f3

err = ‖T4−T3

T3
‖

if err < ǫ then
stop

end if
T2 = T3

f2 = f3

T3 = T4

end for

In the numerical simulations described in Section 6 ∆T = 10. [K] and ǫ = 1 · 10−6.
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Table 1. Simulation details for the different test cases.

Test 1 Test 2 Test 3 Test 4

fpress 1. 1. 1. 0.6

∆t 500 ∆x 500 ∆x 1000 ∆x 5∆x

t [s] 1.E8 3.E7 5.E6 5.E5

Table 2. Injection and reservoir condition for Test cases one and two.

Test 1 Test 2

Injection Reservoir Injection Reservoir

nC1
[mol/cm3] 0.005385 0.001365 0.005385 0.001365

nC4
[mol/cm3] 0.000277 0.001365 0.000277 0.001365

nC9
[mol/cm3] 5.6684E-6 0.004096 5.6684E-6 0.004096

φ 1. 1. 0.4 0.4

Crock
p [J/cm3/K] 0. 0. 1.5 1.5

P [MPa] 13.80331E6 13.78952E6 13.80331E6 13.78952E6

T [K] 800. 344.3 800. 344.3

H [J/cm3] 56.7385 -127.7710 478.9954 -4.9384

Table 3. Injection and reservoir condition for Test cases three and four.

Test 3 Test 4

Injection Reservoir Injection Reservoir

nCO2
[mol/cm3] 0.000284 0.010603 0.000246 0.002109

nC4
[mol/cm3] 0.000567 0.001325 0.000616 0.000264

nC9
[mol/cm3] 0.001985 0.001325 0.001601 0.000264

φ 0.4 0.4 0.4 0.4

Crock
p [J/cm3/K] 1.5 1.5 0.25 0.25

P [MPa] 6.9E6 6.8E6 3.9E6 3.8E6

T [K] 600. 300. 550. 300.

H [J/cm3] 335.8399 -59.1795 75.6951 -6.2640
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Figure 1. Test case 1: Injection of a hot vapour containing 95%C1-4.9%C4-0.1%C9 into

a liquid containing 20%C1-20%C4-60%C9. Cp = 0. [ J

cm3K
], φ = 0.4, t = 1.E8 [s]. From

the top left to the bottom right the following variables are plotted: component molar densi-

ties, temperature and enthalpy, pressure, total velocity and eigenvalues, vapour saturation,

volume filling condition.
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Figure 2. Test case 2: Injection of a hot vapour containing 95%C1-4.9%C4-0.1%C9

into a liquid reservoir containing a mixture of 20%C1-20%C4-60%C9.

Cp = 1.5 [ J

cm3K
], φ = 0.4, t = 3.E7 [s]. From the top left to the bottom right the

following variables are plotted: component molar densities, temperature and enthalpy,

pressure, total velocity and eigenvalues, vapour saturation, volume filling condition.
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Figure 3. Test case 3: Injection of a hot liquid containing 10%CO2-20%C4-70%C9

into a liquid containing 80%CO2-10%C4-10%C9. sv = 0 in the whole domain.

Cp = 1.5 [ J
cm3K

], φ = 0.4, t = 5.E6 [s]. From the top left to the bottom right the following

variables are plotted: component molar densities, temperature and enthalpy, pressure, total

velocity and eigenvalues, liquid density, volume filling condition. The eigenvalues λ1 and

λ2 are on top of each other.
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Figure 4. Test case 4: Injection of a hot mixture containing 40%CO2-10%C4-50%C9 into

a mixture containing 80%CO2-10%C4-10%C9. Cp = 0.25 [ J

cm3K
], φ = 0.4, t = 5.E5 [s].

From the top left to the bottom right the following variables are plotted: component mo-

lar densities, temperature and enthalpy, pressure, total velocity and eigenvalues, vapour

saturation, volume filling condition.
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