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Abstract. There is considerable technological interest in developing new fuel-flexible
combustion systems that can burn fuels such as hydrogen or syngas. Lean premixed systems
have the potential to burn these types of fuels with high efficiency and low NOx emissions due
to reduced burnt gas temperatures. Although traditional scientific approaches based on theory
and laboratory experiment have played essential roles in developing our current understanding
of premixed combustion, they are unable to meet the challenges of designing fuel-flexible lean
premixed combustion devices. Computation, with its ability to deal with complexity and its
unlimited access to data, has the potential for addressing these challenges. Realizing this
potential requires the ability to perform high fidelity simulations of turbulent lean premixed
flames under realistic conditions. In this paper, we examine the specialized mathematical
structure of these combustion problems and discuss simulation approaches that exploit this
structure. Using these ideas we can dramatically reduce computational cost, making it possible
to perform high-fidelity simulations of realistic flames. We illustrate this methodology by
considering ultra-lean hydrogen flames and discuss how this type of simulation is changing
the way researchers study combustion.

1. Introduction
Concerns over U.S. dependence on imports of foreign oil, coupled with pollution and greenhouse
gas emission issues, have generated significant interest in alternative fuels such as hydrogen or
syngas, which is obtained from coal gasification. Effective utilization of these fuels requires
combustion devices that can operate cleanly and efficiently over a broad range of fuels and
fuel mixtures. Lean-premixed systems have the potential for meeting these requirements; they
operate at high efficiency and have low NOx emissions due to reduced burnt gas temperatures.
However, it is difficult to design safe and reliable systems based on premixed combustion. Unlike
non-premixed systems where the flame location and stability are controlled by the mixing of fuel
and oxidizer, premixed flames require device-scale stabilization techniques to create a stable and
statistically stationary flame. The large-scale structure and behavior of the flame is determined
by its coupling with the flow field across a broad range of scales ranging from the device scale
and the dominant energy-bearing scales down to scales associated with the turbulent energy
cascade. Several stabilization mechanisms are considered in the literature [1]. For example,
the Twenty-Ninth Combustion Symposium includes studies by Sattler et al. [2] of a turbulent
V-flame, Shepherd et al. [3] of a swirl-stabilized flame, Most et al. [4] of a bluff-body stabilized
flame, and Chen et al. [5] of Bunsen and stagnation flames. Examples of several stabilized
premixed flames are shown in Figure 1.
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Figure 1. Three different premixed methane flame with different stabilization mechanisms.

Traditional approaches to the study of turbulent premixed combustion are based on a
theoretical model for premixed flames that treats the flame as an interface propagating through
the fluid at a speed determined by the internal flame structure given by one-dimensional
flame analysis. (See, for example, Peters [6].) In its simplest form, this interface propagates
at the one-dimensional laminar flame speed; the overall rate at which the turbulent flame
consumes fuel is determined by the degree to which turbulence wrinkles the flame front,
increasing its surface area and so enhancing the burning rate. More elaborate models incorporate
modifications to the local flame speed based based on the flame stretch due to the curvature
of the front and the local fluid strain field. In essence this “thin flame” approach assumes
a separation between the chemical scales (the flame front) and the significant turbulence
scales in the flow. This basic model has proven highly successful for natural gas combustion
where it forms the basis for phenomenological turbulence/chemistry interaction models in
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Figure 2. Experimental data taken from a lean (φ = 0.27)
hydrogen flame in a low swirl burner. (a) Mie-scattering image
indicating instantaneous flame surface morphology, and (b)
OH PLIF over a smaller region of a similar flame, indicating
the cellular structure of the burning regions, with gaps in the
flame representing local extinction.

engineering analysis codes and
provides the context for the
analysis of experimental data.
(See Bray [7] for a discussion of
how experimental data are used
in conjunction with closure
models for engineering design
studies.)

Unfortunately, this tradi-
tional approach breaks down at
a fundamental level when ap-
plied to the lean premixed com-
bustion of some alternative fu-
els. The origin of the difficulties
is illustrated in Figure 2, which
show the flame surface in an
ultra-lean H2 flame at φ = 0.27.
In Figure 2a we show a Mie
scattering image that uses small
oil droplets which evaporate at



650K to visualize the position of the instantaneous flame front. In Figure 2b we show a laser
induced fluorescence (PLIF) image that shows where the OH radical, a key intermediate in H2

combustion, is concentrated. In this image, we see clear breaks in the flame suggesting local ex-
tinction of the flame. (This type of behavior, referred to as cellular structure, has been observed
both experimentally and computationally in hydrogen combustion, see [8, 9].) We no longer have
a continuous flame surface; the flame cannot accurately be represented as a continuous interface
propagating through the domain. Thus, the traditional approach to studying premixed flames
is not applicable here. Consequently, standard approaches to analysis of experimental data and
conventional engineering design methodologies cannot be used.

Computation has the potential to play a key role in understanding the dynamics of these
types of lean premixed flames and providing the insight needed to analyze experimental data and
develop new engineering design methodologies. Simulation needs to meet several requirements
to fulfill this role. First it must be able to simulate a sufficiently large range of scales to represent
the types of turbulent conditions found in laboratory experiments while adequately resolving the
internal structure of the flame. Typical laboratory experiments are characterized by an integral
scale `t ≈ 2− 6 mm. We would like to simulate domains that are on the order 10 `t to provide
a realistic range of turbulence scales, i.e., domains that are several centimeters on each side.
The second requirement is that the simulations incorporate realistic models for chemistry and
transport to provide the necessary physics fidelity to represent the interplay of turbulence and
chemistry.

In this paper, our goal is to discuss the steps in developing a simulation capability that meets
these requirements. We identify three major components in the development of computational
methodology:

• Mathematical model
– How do we translate the physical problem we wish to solve into a mathematical

problem?
– Is the model well-posed?
– What are the properties of solutions of the model?

• Discretization
– How do we approximate the mathematical model with a finite number of degrees of

freedom?
– What are the accuracy and stability properties of the discretization?

• Solution algorithms and software
– How do we solve the resulting discrete systems of equations computationally?
– How do we implement the overall algorithm?
– Does the implementation efficiently solve the system?
– Does the software effectively utilize computing resources?

In the remainder of the paper we illustrate these steps in defining a computational methodology
for premixed combustion and illustrate the methodology on ultra-lean H2 combustion. We note
that there is considerable interplay between these various components; the overall philosophy
here is based on considering the process in its entirety.

2. Mathematical model
The starting point for the development of the mathematical model is the compressible Navier-
Stokes equations for a reacting flow. Specifically, we consider a multicomponent gaseous mixture
ignoring Soret and Dufour effects, body forces and radiative heat transfer, and assume a mixture
model for species diffusion[10, 11]. The governing equations, which express conservation of mass,
momentum and energy, augmented by species transport, are



∂ρ

∂t
+∇ · ρU = 0,

∂ρU

∂t
+∇ · ρUU +∇p = ∇ · τ,

∂ρE

∂t
+∇ · ρUE + pU = ∇ · λ∇T +

∑
m

∇ · hmρDm∇Ym +∇ · τU,

∂ρYm

∂t
+∇ · ρUYm = ∇ · ρDm∇Ym − ω̇m,

where ρ is the density, U is the velocity, E = Σem(T )Ym + 1/2U ·U is the total energy, Ym is the
mass fraction of species m, T is the temperature, and ω̇m is the net destruction rate for species
m due to chemical reactions. Also, λ is the thermal conductivity, τ is the stress tensor, cp is
the specific heat of the mixture, and em(T ), hm(T ), and Dm are the internal energy, enthalpy
and species mixture-averaged diffusion coefficients of species m, respectively. We note that for
these equations, we have ΣYm = 1, ΣρDm∇Ym = 0, and Σω̇m = 0 so that the sum of the
species transport equations gives the conservation of total mass. These evolution equations are
supplemented by an equation of state for a perfect gas mixture:

p0 = ρRmixT = ρRT
∑
m

Ym

Wm

where Wm is the molecular weight of species m, and R is the universal gas constant.
One possible approach to simulating reacting flow is to simply discretize this system of

equations. However, the compressible flow equations provide a general description of essentially
continuum fluid dynamic phenomena. Consequently, before discretizing we first consider the
basic characteristics of premixed flames and discuss how those characteristics relates to more
general fluid dynamics. The compressible flow equations include two types of waves. They
include the transport of material at the fluid velocity U and acoustic waves propagating at
speed U + c where c is the speed of sound. For typical premixed flame experiments, U ≈ 3− 30
m/s while the sound speed in the hot product gases is about 1000 m/s. Thus, the time scale of
the fluid motion is considerably longer than the time scale of acoustic wave propagation.

How do these time scales relate to the time scales of the flame? Typical thermal flame
thickness, δT , is 1 mm or more for lean flames while the laminar flame speed sL ≈ 5− 50 cm/s.
We can define time scales for flame propagation, fluid motion and acoustic wave as δT /SL,
δT /|U | and δT /c, respectively. With these definitions, we see that the acoustic time scale is
much smaller than the flame and fluid time scales. This type of flow is referred to as low Mach
number since the Mach number, M = |U |/c << 1. An alternative to discretization of the
compressible equations directly is to exploit the separation of scales between the acoustic waves
and the fluid motion by adopting a low Mach number formulation.

Before discussing the low Mach number model and its implementation in detail, it is worth
noting how the fluid dynamical time scales relate to the chemical time scales. Detailed kinetics
mechanisms are typically quite stiff, with time scales that are potentially fast with respect to the
fluid motion. However, by examining the structure of lean premixed laminar flames, we see that
the principal chemical length and time scales, based on the full width at half maximum (FWHM)
of the heat release profile and the convective time scale are 0.1-0.3 times the flame time scale.
Thus, the time scale of heat release is roughly comparable to the fluid time scale. Examination
of the net chemical production rates shows that they are also smooth on the length and time
scales of the fluid, indicating that the fast chemical reactions are near equilibrium through
the flame. Thus, although the numerical procedures used to integrate the chemical reactions



must address the large range of chemical time scales, the stiffness of the chemistry does not
itself pose a significant problem for low Mach number formulations. See, for example, [12–18]
for applications of low Mach number formulations with detailed kinetics. (We note that this
characteristic is a property of the type of problems we are considering; in other situations, such
as detonation physics, energy is released on acoustic time scales and a compressible formulation
is needed to respect the chemistry-fluid coupling at the faster time scales.)

The low Mach number combustion formulation was first introduced by Rehm and Baum [19]
and was later derived rigorously from low Mach number asymptotic analysis by Majda and
Sethian [20]. The basic steps of the analysis are first to normalize the problem by rescaling and
then to expand the terms in the compressible Navier-Stokes equations in M . Equating terms in
Mach number and examing the behavior as M → 0 one can show that in an unconfined domain,
the pressure can be decomposed as

p(x, t) = p0 + π(x, t)

where p0 is the ambient thermodynamic pressure and π is a perturbational pressure field
that satisfies π/p0 ∼ O (

M2
)
. (In a more general setting, p0 is a function of t.) With

this decomposition, p0 defines the thermodynamic state; all thermodynamic quantities are
independent of π.

With this decomposition, the low Mach number equations for an open domain are

∂ρ

∂t
+∇ · ρU = 0,

∂ρU

∂t
+∇ · ρUU +∇π = ∇ · τ,

∂ρh

∂t
+∇ · ρUh = ∇ · λ∇T +

∑
m

∇ · hmρDm∇Ym,

∂ρYm

∂t
+∇ · ρUYm = ∇ · ρDm∇Ym − ω̇m,

Although similar to the compressible equations, the low Mach number model expresses the
energy equation in terms of enthalpy, h(T, Ym) =

∑
m hm(T )Ym. More importantly, acoustic

waves are instantaneously equilibrated and the equation of state, p0 = ρRmixT , now constrains
the evolution. As a result, this description retains compressibility effect due to heat release
but removes the time scale associated with acoustic wave propagation from the dynamics of the
system. In this form, the perturbation pressure, π, plays the role of a Lagrange multiplier to
constrain the evolution so that this constraint is satisfied.

Although not directly needed to specify the model, by differentiating the enthalpy equation
we can derive an auxiliary equation for temperature of the form

ρcp

(∂T

∂t
+ U · ∇T

)
= ∇ · λ∇T +

∑
m

(
ρDm∇Ym · ∇hm + hmω̇m

)

3. Discretization methodology
By adopting a low Mach number formulation, we have analytically removed acoustic wave
propagation from the system. This allows us to construct a temporal discretization approach that
advances the solution at the fluid time scales rather than the acoustic time scales. However,
in changing the form of the equations, we have also changed to system from an initial value
problem to a system that evolves subject to a constraint, referred to as a differential algebraic



equation (DAE). DAE’s are typically harder to treat numerically than initial value problems.
See [21, 22] for a discussion of discretization procedures for DAE’s.

DAE’s are classified based on their index, which is the minimum number of times the
constraint needs to be differentiated to reduce the problem to an initial value problem. In
essence, the higher the index, the harder the system is to solve. (The low Mach number equations
are index 3.) One approach to solving a constrained system is to differentiate the constraint,
referred to as index reduction. In the context of low Mach number combustion, we differentiate
the equation of state along particle paths and use the evolution equations for ρ, Ym and the
auxiliary equation for T to define a constraint on the velocity:

∇ · U =
1
ρ

Dρ

Dt
= − 1

T

DT

Dt
− R

R

∑
m

1
Wm

DYm

Dt

=
1

ρcpT

(
∇ · (λ∇T ) +

∑
m

ρDm∇Ym · ∇hm

)
+

1
ρ

∑
m

W

Wm
∇(ρDm∇Ym)

+
1
ρ

∑
m

(
W

Wm
− hm(T )

cpT

)
˙ωm

≡ S

Structurally, the low Mach number equations thus take the form

ρt +∇ · ρu = 0

Ut + U · ∇U +
1
ρ
∇π =

1
ρ
∇ · τ

∇ · U = S

with additional species and enthalpy equations whose spatial derivatives define the velocity
constraint S.

The structure of the equations after differentiating the constraint is similar to the constant-
density incompressible Navier Stokes equations. For incompressible flows, projection-based
fractional step methods, which parallel standard DAE methodologies, have proven to provide
an efficient discretization strategy [23–25] Our goal then is to define a generalized projection
methodology for low Mach number reacting flows. This generalization requires that we address
two key differences between the incompressible flow equations and the low Mach number system.
First, the low Mach number system includes finite amplitude density variations; and, second,
the constraint on the velocity field is inhomogeneous. Two different projection-based sequential
algorithms have been proposed. One of these approaches, developed by McMurtry et al [26] and
Rutland and Ferziger [27], advances the thermodynamic variables and then uses the conservation
of mass equation to constrain the evolution. Imposing the constraint in this form requires the
solution of a Poisson equation to impose the constraint. Although this approach does not fit
within a mathematical projection framework, is has been successfully used by a number of
authors to model reacting flows. See, for example, [12, 14, 28–30].

Here, we consider a different approach based on a generalized projection framework first
introduced in Bell and Marcus [31]. The basic idea here is that, subject to boundary conditions,
any vector field, V can be decomposed as

V = Ud +
1
ρ
∇φ

where Ud is divergence free and Ud and 1
ρ∇φ are orthogonal with a suitable inner product. In

particular, this decomposition is an exact analog to the standard Hodge decomposition in a



ρ-weighted inner product; e.g., ∫
(Ud · 1

ρ
∇φ)ρ dm = 0

Using this inner product, we can define a ρ-based projection, Pρ such that PρV = Ud with
||Pρ|| = 1 and P2

ρ = Pρ.
This projection operator allows us to address the finite amplitude density variations in the

low Mach number system. The Majda and Sethian analysis [20] shows that the compressibility
effects in the flow, given by S, can be represented in terms of the gradient of a potential flow,

∇ · ∇ξ = S

Using this form, we can further generalize the vector field decomposition to write any velocity
field as

V = Ud +∇ξ +
1
ρ
∇φ

We can then define
U = Pρ(V −∇ξ) +∇ξ

so that ∇ · U = S and Pρ(1
ρ∇φ) = 0

This construction provides the basis for a projection algorithm for the low Mach number
equations. (We also note that using this generalized construction we can recast the system as a
pure initial value problem, which can be used to study mathematical properties of the system.)

The basic idea of the projection algorithm is to advance the thermodynamic variables and
a provisional velocity with a lagged approximation to the constraint. We then use the vector
field decomposition to correct the velocity field so that it satisfies the constraint. Here, we only
sketch the algorithm, for details see [32, 33].

First we advance the density

ρn+1 − ρn

∆t
= −∇ · (ρUADV )n+ 1

2 ,

species concentrations and enthalpy,

ρn+1χn+1 − ρnχn

∆t
+∇ · (ρUADV χ)n+ 1

2 = Dχ + Rχ for χ = h, Ym ,

and compute a provisional velocity

U∗ − Un

∆t
= −[UADV · ∇U ]n+ 1

2 − 1

ρn+ 1
2

∇πn− 1
2 +

1

ρn+ 1
2

∇ · τn + τ∗

2
.

For this stage we use a Crank-Nicolson discretization of the viscous terms and a specialized
second-order Godunov algorithm to compute the advective derivatives. As part of the Godunov
algorithm we compute an advective velocity field UADV that is projected so that the vector
field used for advection satisfies the constraint. A further operator-splitting procedure is used
to advance the species equations. In particular, we first advance the chemistry by ∆t/2, then
advance the advection and diffusion components and finally complete the chemistry advance.
This allows us to decouple the chemistry and use stiff ODE integration methodology to advance
the kinetics equations.

The updated thermodynamic variables are then used to compute Sn+1. To extract the
component satisfying the divergence constraint we solve

∇ ·
(

1
ρ
∇φ

)
= ∇ · ~U∗ − Sn+1



for φ, and set
πn+1/2 = πn−1/2 + φ

and
~Un+1 = ~U∗ − 1

ρ
∇φ

This procedure implements the generalized vector field decomposition discussed above but
exploits linearity to perform only a single elliptic solve to enforce the constraint.

We note that the algorithm presented above discretely conserves density, species (up to
reactions) and enthalpy. However, because we use a differentiated form of the constraint, the
method can drift off the constraint surface. To correct for this drift, we include a minor correction
in the projection used to compute UADV to force the solution back toward the constraint.

Given the basic discretization scheme described above, we now examine the spatial resolution
requirements for flame simulations. At the integral scales and turbulent intensities found in
typical laboratory scale experiments, the inflow turbulence typically has a Kolmogorov scale,
κ ≈ 200µm. In the post-flame region, the turbulence is reduced as a result of fluid expansion
through the flame and increased viscosity at higher temperatures.

Typical resolution requirements suggest a spatial resolution of a small multiple of κ. Near
the flame, we need to resolve the internal structure of the flame, which typically requires a
finer resolution than is required to resolve the turbulent flow. This variation in the range of
requisite spatial resolutions suggests some form of adaptive mesh refinement (AMR) to locally
balance resolution with computational requirements. For the AMR methodology, we use a block-
structured hierarchical form of refinement that was first developed by Berger and Oliger [34]
for hyperbolic partial differential equations. A conservative version of this methodology for gas
dynamics was developed by Berger and Colella [35] and extended to three dimensions by Bell
et al. [36]. This approach was extended to variable-density incompressible flow by Almgren et
al. [37]. Pember et al. [32] generalized the approach to low Mach number combustion with
simplified chemistry and transport. The approach discussed here follows the algorithm in Day
and Bell [33], which treats detailed chemistry and transport.

AMR is based on a sequence of nested grids with successively finer resolution in both time
and space. In this approach, fine grids are formed by dividing coarse cells by a refinement
ration, r, in each direction. Increasingly finer grids are recursively embedded in coarse grids
until the solution is adequately resolved with each level contained in the next coarser level. An
error estimation procedure based on user-specified criteria evaluates where additional refinement
is needed and grid generation procedures dynamically create or remove rectangular fine grid
patches as resolution requirements change.

The adaptive time-step algorithm advances grids at different levels using time steps
appropriate to that level based on CFL considerations. The time-step procedure can most
easily be thought of as a recursive algorithm, in which to advance level `, 0 ≤ ` ≤ `max the
following steps are taken:

• Advance level ` in time as if it is the only level. Supply boundary conditions for U, ρ, Ym, h
and π from level `− 1 if level ` > 0, and from the physical domain boundaries.

• If ` < `max

– Advance level (` + 1) r times with time step ∆t`+1 = 1
r∆t` using boundary conditions

for U, ρ, Ym, h and π from level `, and from the physical domain boundaries.
– Synchronize the data between levels ` and `+1, interpolate corrections to higher levels

if ` + 1 < `max.

The adaptive algorithm, as outlined above, performs operations to advance each level
independent of other levels in the hierarchy (except for boundary conditions) and then computes



a correction to synchronize the levels. (Implicit discretization must be solved over the entire
level simultaneously however.) Loosely speaking, the objective in this synchronization step is to
compute the modifications to the coarse grid that reflect the change in the coarse grid solution
from the presence of the fine grid. There are two steps in the synchronization. First, the fine
grid is averaged onto the coarse grid; i.e., the conserved quantities on coarse grid cells covered
by fine grid are replace by the average of the fine grid.

The second step of the synchronization corrects for errors at the coarse-fine boundary that
arise from advancing the levels independently. A complete exposition of the details of the AMR
synchronization is beyond the scope of this paper. Here we only sketch the basic ideas, see
[33, 37] for details. When we advance the finer levels, we impose Dirichlet boundary conditions
defined by the coarse grid at the (non physical) boundaries of the fine grids. As a result, the
mismatch in solutions between levels ` and ` + 1 when they reach the same point take the form
of flux mismatches at the coarse/fine interface. The first step in correcting these mismatches is
to define what is meant by the solution on the grid hierarchy. Using this definition, we can then
computed the errors that arise from solving on each level “independently”. We can then solve
an appropriate correction equation to correct the solution.

The correction equations match the structure of the type of equation they are correcting. In
particular, they reflect the original discrete form of the equation with a right hand side that
is supported at the coarse-fine boundary. For explicit discretizations of hyperbolic PDE’s the
correction is an explicit flux correction localized at the coarse/fine interface. For an elliptic
equation (e.g., the projection) the source is localized on the coarse/fine interface but an elliptic
equation is solved to distribute the correction through the domain. Thus the correction takes
the form of a discrete analog of a layer potential problem.

The synchronization for a multiphysics algorithm such as the low Mach number projection
algorithm is more complex. Essentially, we accumulate the flux mismatch that arises at
each step of the algorithm and perform synchronization steps that mimic the basic steps of
the algorithm. The resulting AMR algorithm then preserves the second-order accuracy and
conservation properties of the underlying base discretization.

4. Software and solvers
To simulate realistic premixed turbulent flames, we must be able to implement the adaptive low
Mach number algorithm described above so that we can effectively utilize high-performance
parallel computers. Before discussing the implementation in more detail, we first discuss
the impact of some of the choices we made in developing the basic algorithm on the design
of the software. Our basic discretization strategy decomposes the problem into different
mathematical components to treat advection, diffusion, chemical reactions, and projections. We
use an explicit treatment of advection so that the implicit solves needed for diffusion and the
projection represent discrete approximations to self-adjoint elliptic partial differential equations.
Consequently, we can solve the requisite linear systems using multigrid iterative methods. Also,
we have decomposed the dynamics so that the chemistry is advanced independently of the other
processes. As a result the chemistry can be treated locally on a point-by-point basis.

Another important feature for the software design is the choice of AMR strategy. By
adopting a block-structured form of AMR, the solution at each level in the hierarchy is naturally
represented in terms of data defined on a collection of logically rectangular grid patches each
containing a large number of points. Thus, the data is represented by a modest collection of
relatively large regular data objects as compared to a point-by-point refinement strategy. This
type of approach allows us to amortize the irregular aspects of an adaptive algorithm over large
regular operations on the grid patches. This organization of data into large aggregate grid
patches also provides a model for parallelization of the AMR methodology.

Our adaptive methodology is embodied in a hybrid C++/FORTRAN software system. In this



framework, memory management and control flow are expressed in the C++ portions of the
program and the numerically intensive portions of the computation are handled in FORTRAN.
The software is written using a layered approach, with a foundation library, BoxLib, that is
responsible for the basic algorithm domain abstractions at the bottom, and a framework library,
AMRLib, that marshals the components of the AMR algorithm, at the top. Support libraries
built on BoxLib are used as necessary to implement application components such as interpolation
of data between levels, the coarse/fine interface synchronization routines, and linear solvers used
in the projections and diffusion solves.

The fundamental parallel abstraction is the MultiFab, which encapsulates the FORTRAN-
compatible data defined on unions of Boxs; a MultiFab can be used as if it were an array
of FORTRAN-compatible grids. The grids that make up the MultiFab are distributed among the
processors, with the implementation assigning grids to processors using the distribution given
by the load balance scheme described in Crutchfield [38] and in Rendleman et al. [39]. This
load balance scheme is based on a dynamic programming approach for solving the knapsack
problem: the computational work in the irregularly sized grids of the AMR data structures is
equalized among the available processors. After the initial allocation of grids some additional
changes to the grid distribution are performed to reduce communications between processors.
(For non-reacting flows, the number of cells per grid is often a good work estimate; for flows
involving additional physics, such as chemical kinetics, the amount of work per cell is often
highly variable, and work estimates based on approximating the local complexity of the kinetics
are needed for good parallel performance.) MultiFab operations are performed with an owner
computes rule with each processor operating independently on its local data. For operations
that require data owned by other processors, the MultiFab operations are preceded by a data
exchange between processors.

Each processor contains meta-data that is needed to fully specify the geometry and processor
assignments of the MultiFabs. At a minimum, this requires the storage of an array of

OH PLIF - experiment X(OH) - simulation

Figure 3. Comparison of experimental OH PLIF and
computed OH mole fraction.

boxes specifying the index
space region for each AMR level
of refinement. In the paral-
lel implementation, meta-data
also includes the processor dis-
tribution of the FORTRAN com-
patible data. The meta-data
can thus be used to dynamically
evaluate the necessary commu-
nication patterns for sharing
data amongst processors en-
abling us to optimize communi-
cations patterns within the al-
gorithm.

5. Lean premixed hydrogen flames
The methodology describe above has been used for a number of studies of premixed methane
hydrogen combustion at conditions similar to those illustrated in Figure 2. flames, see [15–
18, 40, 41]. Here we focus on recent work on applying the methodology to ultra-lean For these
preliminary simulations, rather than model the full low-swirl burner, we consider an idealized
configuration in which in-flowing turbulence is allowed to interact with an initially flat laminar
flame. For the simulations discussed here, we use the feedback control algorithm described in [17]
to stabilize the flame and consider turbulent conditions similar to what would be encountered
in the central region of low-swirl burner. We also note for hydrogen we needed to increase the



equivalence ratio from φ = 0.27 used in the experiments to φ = 0.37 in order to compensate
for the detailed hydrogen mechanism’s poor prediction of the laminar flame speed at ultra
lean conditions. The fundamental issue here stems from the instability of hydrogen flames at
lean conditions. In particular, at φ = 0.27 it is not possible to stabilize an unstrained, flat

Figure 4. Isosurface of isotherm
corresponding to peak fuel consumption
in laminar flame (1144K), colored by
fuel consumption normalized by peak
laminar flame value.

laminar flame. Consequently, the laminar flame
speed cannot be measured directly, but must be
extrapolated from strained flame data. With these
caveats, available mechanisms appear to severely
underestimate the flame speed in the ultra-lean
regime. (Note that in the discussion below when
we refer to a flat laminar flame, it is a theoretical
construct; the real flame at these conditions is
unstable.)

We note that for the conditions considered here,
the flame speed is ≈ 15 cm/sec, and the thermal
thickness of the flame is ≈ 750 microns while the
FWHM for heat release is ≈ 500 microns. Fluid time
scales for this study vary with turbulence intensity
giving a fluid time scale of 125-250 µsec, which is
faster than the heat-release and flame time scales.

The simulations were performed in a domain 3 ×
3× 9 cm in size with an effective resolution of 58 µm
and are part of a larger study for a variety of different
fuels and turbulence conditions. In Figure 3 we show

representative slices from experiment and simulation for a weak turbulence case corresponding
to u′ ≈ 21 cm/s showing regions of local extinction. The comparison suggests that the use of
the control strategy to mimic conditions in the central region of the low-swirl burner provides a
reasonable representation of the flow.
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Figure 5. Temperature contours, T =
1144K and T = 650K, superimposed on
slice of the fuel consumption rate through
the flame.

We now turn to a more detailed examination
of a stronger turbulence case with u′ ≈ 43
cm/s. In Figure 4 we show an image of the
instantaneous flame surface that illustrates the
topology of the extinction regions, indicated by
dark blue, in three dimensions. We also note that
on much of the surface, the fuel consumption is
considerably higher than the corresponding rate
for the flat laminar flame. We also note that the
extinction regions are quite robust. Once formed,
they do not subsequently disappear. Instead,
existing extinction regions merge together while
new regions are formed as turbulence interacts with
the flame.

To provide a more detailed characterization of
the structure of the flame, we want to examine the
flame geometry. However, to explore the geometry,
we must first define the flame surface. This poses
something of a problem as illustrated in Figure 5,
which shows two isotherms superimposed on a slice through the flame that is colored by fuel
consumption. A natural choice to define the flame surface is the T = 1144K isotherm, which
corresponds to the temperature of peak fuel consumption in the flat laminar flame. However,



because of the local extinction this isotherm meanders through the products to bridge across
gaps in the fuel consumption profile. The T = 650K contour reflects what would be measured
experimentally using Mie scattering of oil droplets that evaporate at 650K to image the flame
location. That contour does not take such severe excursions, but also does not track the fuel
consumption as accurately as the T = 1144K contour. To provide a better definition of the flame,
we define the flame conditionally in terms of the T = 1144K isotherm with the added condition
that the heat release on the surface be at least 10% of the laminar flame value. For a methane
flame, the geometry is relatively insensitive to the precise definition of the flame; for hydrogen the
differences can be substantial. For example, the instanteous flame area corresponding to the data
in Figure 5 varies from 29.7 cm2 at T = 650K to 45.2 cm2 at T = 1144K. The conditioned data
gives an area of 34.4 cm2, which is a more realistic estimate but still somewhat arbitrary because
of the choice of conditioning parameter. We also note that with the conditional definition of the
flame, there is not a continuous flame surface; instead, the flame is represented as a collection
of disconnected patches, or cellular structures.
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Figure 6. PDF of mean curvature and shape factor on the condition T = 1144K surface.

To quantify the geometry of the flame surface, we compute mean and Gaussian curvature on
the conditioned isosurface. Following Pope et al. [42], we define the shape factor, S.

S =
{

R1/R2 if |R1| < |R2|
R2/R1 otherwise

The shape factor qualitatively describes the surface: values near −1 indicate saddle points,
while those near +1 indicate spherical regions. In Figure 6 we present PDF’s of mean curvature
and shape factor. The peak value of the mean curvature PDF positive and the distribution is
highly asymmetric, showing that most of the flame surface is convex with respect to the unburnt
gases. The shape factor, which is sharply peaked near zero for a methane flame, is also highly
asymmetric, showing that much of the burning is occurring in regions where the flame is locally
ellipsoidal.

Flame morphology for ultra-lean H2 is distinctly different than a methane flame. The next
question to ask is whether there are similar substantial differences in the chemical behavior of
the flame. To address this question we show in Figure 7 a joint PDF of temperature and H2

computed from the simulation data. For comparison, we also show the analogous distribution for
a methane flame. In the methane flame the temperature and CH4 are highly correlated showing
that the internal structure of the turbulent flame closely matches that of the laminar flame. In
essence, the turbulence does not disturb the flame structure and the behavior is well-described
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Figure 7. Joint PDF of temperature and H2. For comparison, we present a comparable joint
PDF for a methane flame. In both cases, the black line represents fuel versus temperature for a
corresponding flat laminar flame.

by flamelet theory. The structure of the hydrogen flame is completely different. The H2 is
broadly distributed showing that the turbulence has substantially disrupted the flame. In fact,
the peak of the distribution forms a ridge that is significantly shifted from the laminar flame
solution. This shows that the principle mode of burning in the flame is occurring at substantially
different conditions than the corresponding laminar flame; in particular, most of the burning is
occurring at effectively richer conditions than the inflow equivalence ratio, consistent with the
enhanced fuel consumption shown in Figure 4. Preliminary analysis shows that as fluid flows
through the gaps in the flame, the fuel diffuses out of those regions into the adjacent strongly
burning regions enriching the combustion.

The results discussed above represent only the initial stages in understanding the dynamics of
ultra-lean hydrogen flames. However, they do serve to underscore a number of features of these
flames. In particular, the flame burns in cellular structures that are surrounded by a network
of extinction regions. Consequently, the traditional theoretical underpinning for the analysis
of premixed flames, which assumes a continuous flame sheet separating burned and unburned
regions, does not apply to these flames. Analysis of the chemical behavior of the system shows
that the principle mode of burning has been significantly modified and is distinctly different
than that of the corresponding laminar flame. From an experimental perspective, this poses
significant difficulties. Measurements can provide an estimate of the T = 650K isotherm and can
demonstrate the existence of local extinction regions on the flame surface. However, most of the
diagnostics we have considered here are simply not possible to measure and standard approaches
for analysis of flame data cannot be applied. Substantial progress in our understanding of lean
hydrogen combustion will only be possible by a combination of experiment and high-fidelity
simulations.

6. Conclusions
In this paper, we have discussed the development of a parallel, adaptive low Mach number
simulation capability for modeling premixed turbulent combustion. The methodology is
an outgrowth of considering the entire process from developing a mathematical model that
exploits specific features of the problem to the development of discretizations that reflect



the mathematical structure of the model to software implementation issues that enable the
methodology to effectively utilize high-performance parallel computers. The careful synthesis
of these different elements has allowed us to construct new computational tools that are several
orders of magnitude faster than more traditional approaches. This enhanced capability has made
it possible to simulate realistic turbulent flames without using explicit models for turbulence or
turbulence / chemistry interaction, and we are currently working with experimentalists to use
these tools to address fundamental questions in turbulent premixed combustion.
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