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ABSTRACT

At a density near a few ×107 g cm−3, the subsonic burning in a Type Ia

supernova enters the distributed regime (high Karlovitz number). In this regime,

turbulence disrupts the internal structure of the flame, and so the idea of lam-

inar burning propagated by conduction is no longer valid. The nature of the

burning in this distributed regime depends on the turbulent Damköhler number

(DaT ), which steadily declines from much greater than one to less that one as

the density decreases to a few ×106 g cm−3. Classical scaling arguments pre-

dict that the turbulent flame speed sT , normalized by the turbulent intensity ǔ,

follows sT /ǔ = Da
1/2

T for DaT
<
∼1. The flame in this regime is a single turbulently-

broadened structure that moves at a steady speed, and has a width larger than

the integral scale of the turbulence. The scaling is predicted to break down at

DaT ≈ 1, and the flame burns as a turbulently-broadened effective unity Lewis

number flame. This flame burns locally with speed sλ and width lλ, and we refer

to this kind of flame as a λ-flame. The burning becomes a collection of λ-flames

spread over a region approximately the size of the integral scale. While the total

burning rate continues to have a well-defined average, sT ∼ ǔ, the burning is

unsteady. We present a theoretical framework, supported by both 1D and 3D

numerical simulations, for the burning in these two regimes. Our results indicate

that the average value of sT can actually be roughly twice ǔ for DaT
>
∼1, and

that localized excursions to as much as five times ǔ can occur. We also explore

the properties of the individual flames, which could be sites for a transition to

detonation when DaT ∼ 1. The λ-flame speed and width can be predicted based

on the turbulence in the star (specifically the energy dissipation rate ε∗) and the

turbulent nuclear burning time scale of the fuel τT
nuc

. We propose a practical

method for measuring sλ and lλ based on the scaling relations and small-scale

computationally-inexpensive simulations. This suggests that a simple turbulent

flame model can be easily constructed suitable for large-scale distributed super-

novae flames. These results will be useful both for characterizing the deflagration
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speed in larger full-star simulations, where the flame cannot be resolved, and for

predicting when detonation occurs.

Subject headings: supernovae: general — white dwarfs — hydrodynamics —

nuclear reactions, nucleosynthesis, abundances — conduction — methods: nu-

merical — turbulence — distributed flames

1. INTRODUCTION

In Aspden et al. (2008a) (henceforth Paper I) three-dimensional simulations of resolved

flames were performed that examined the interactions between turbulence and a carbon-

burning flame in a Type Ia supernova at different densities. Because of the strong dependence

of flame width and speed on density, this study can be viewed as a survey of the behavior

of the flame at variable Karlovitz number,

Ka =

√

ǔ3

s3

L

lL
l
. (1)

Here sL and lL are the laminar flame speed and width, respectively, and ǔ and l are the turbu-

lent intensity (rms velocity) and integral length scale (defined conventionally as the integral

of the longitudinal correlation function). For Ka<
∼1, the flame is laminar with propagation

determined by a balance between conductive and burning time scales. Such laminar flames

have a large Lewis number, which is to say thermal diffusion occurs much faster than carbon

diffusion. This means that perturbing the flame surface into the ash leads to a focusing of

heat by diffusion, enhancing the burning rate, burning away the perturbation. Similarly, per-

turbing the flame surface into the fuel leads to a defocusing of heat by diffusion, decreasing

the burning rate. As a result, the flames are thermodiffusively stable. At small-to-moderate

Karlovitz numbers (Ka<
∼1), it was found that this thermodiffusively-stable nature led to a

balance between local enhancement of the flame and local extinction, and so the turbulent

flame speed remained close to the laminar value.

However, once the Karlovitz number was sufficiently large (Ka>
∼10), turbulence was

sufficiently strong that the turbulent mixing dominated thermal diffusion, and the flame

became completely stirred (it resembled a turbulent mixing zone) and its width was greatly

broadened. The turbulent flame width was also much greater than the integral length scale.

While the local burning rate was greatly reduced, the overall flame speed was a factor of five

or six times the laminar flame speed due to the enhanced volume of the burning.

A key result from Paper I was that at high Karlovitz number (Ka ≈ 230), turbulence

dominates the mixing of fuel and heat while thermal diffusion plays only a minor role.



– 3 –

Figure 1 shows a joint probability density function (JPDF) of fuel and temperature from

Paper I. The solid red line shows the distribution from the flat laminar flame where thermal

diffusion is the dominant mixing process, and the solid black line shows the distribution of

fuel burning isobarically with no thermal or species diffusion. The agreement with the JPDF

demonstrates that the turbulent flame is burning at an effective Lewis number close to unity

- the mixing is chiefly due to turbulence.

The simulations in Paper I were performed in small domains to ensure that the laminar

flame was fully-resolved – the domain size was approximately twenty-five times the laminar

flame width. The aim of this paper is to investigate turbulent flame speeds in larger domains,

with the aim of predicting high Karlovitz flame speeds in a full star, and specifically testing

predictions made in Paper I. In this paper, we will refine these predictions by giving an

in-depth theoretical description of the distributed burning regime, which are then compared

with one- and three-dimensional simulations.

2. THEORETICAL DESCRIPTION OF THE DISTRIBUTED BURNING

REGIME

There is diversity in the literature when naming the burning regimes for large Karlovitz

number. Here we use the term “distributed burning regime” (or “distributed reaction zone”)

to refer collectively to all burning with large Karlovitz number (Ka>
∼10). We also follow

Woosley et al. (2009) in further subdividing this region based upon the turbulent Damköhler

number, DaT , to be defined below. Specifically, DaT < 1 will be referred to as the “well-

stirred reactor” (see Peters (1986) or Woosley et al. (2009)) and DaT > 1 as the “stirred-flame

regime” (see Kerstein (2001) or Woosley et al. (2009)).

2.1. The Well-Stirred Reactor

Damköhler (1940) identified two burning regimes, which he referred to as “small-scale”

and “large-scale” turbulence, see also Peters (1999, 2000). In the large-scale turbulence

regime, laminar flames are dragged around by large turbulent eddies, which is an appropriate

description of the burning in a Type Ia supernovae at high density (Woosley et al. 2009).

The high Karlovitz number case from Paper I is in the “small-scale” turbulence regime,

where the small-scale mixing is dominated by turbulence, rather than diffusion.

In this regime, the turbulent eddies are strong enough to disrupt the internal structure

of the flame. The time scale of these eddies is faster than the time scale of the flame, so
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the flame is mixed before it can burn. Therefore, the burning takes place on an inductive

time scale, or turbulent nuclear time scale, which is much slower than the laminar nuclear

time scale. Damköhler predicted (by analogy with laminar flames) that the turbulent flame

speed sT and width lT should depend upon the turbulent diffusion coefficient and the nuclear

burning time scale,

sT =

√

DT

τT
nuc

, and lT =
√

DT τT
nuc

, (2)

where τT
nuc

is the turbulent nuclear time scale (τT
nuc

= lT /sT ), and DT is the turbulent diffusion

coefficient DT = αǔl (not to be confused with DaT ), where α is an order one constant. For

convenience, take α = 1, which can be thought of as absorbing the constant into the definition

of the turbulent flame width, which is ambiguous.

Keeping the Karlovitz number fixed (so the energy dissipation rate of the turbulence

ε∗ = ǔ3/l is constant) and assuming that τT
nuc

is constant (i.e. the limiting value has been

achieved), then there is only one free parameter. This parameter can be written as a turbulent

Damköhler number, defined as

DaT ≡
τT

τT
nuc

=
sT

ǔ

l

lT
. (3)

It is straightforward to show that DaT ∝ l2/3, where the constant of proportionality is

(ε∗1/3τT
nuc

)−1. Therefore, the free parameter can be thought of in terms of the integral length

scale. Both sT and lT are proportional to D
1/2

T , so writing DT = ǔl = ε∗1/3l4/3, it follows

immediately that both sT and lT scale with l2/3 (or equivalently DaT ).

2.2. The Stirred-Flame Regime

When the turbulence time scale τT becomes comparable to the turbulent nuclear time

scale τT
nuc

, i.e. DaT ≈ 1, the turbulence on the integral length scale can no longer mix the

flame before it burns. Therefore, the flame can not be broadened any further and a limiting

behavior is reached. Specifically, for DaT
>
∼1, the flame burns like a unity Lewis number flame

(on the scale of the flame width) with local flame speed sλ and width lλ. We refer to this

kind of burning as a λ-flame.

Defining a turbulent Karlovitz number as

KaT =

√

ǔ3

s3

T

lT
l

, (4)

it can be shown that Da2

T Ka2

T = α ≡ 1. Therefore, when the scaling relations break down
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at DaT ≈ 1, it follows immediately that the turbulent flame speed is equal to the turbulent

intensity and the turbulent flame width is equal to the integral length scale.

It is the limit DaT ≈ 1 that divides the distributed regime into the well-stirred reactor

regime and the stirred-flame regime. In particular, note that it is the turbulent Damköhler

number that is the divide, and that DaT = σDaL, where σ = τL
nuc

/τT
nuc

is the ratio of the

nuclear time scales. Therefore, a λ-flame can only exist in the stirred-flame regime, i.e.

DaT > 1 and Ka>
∼10.

Figure 2 shows a regime diagram, based on Peters (1999, 2000), where we emphasize

the divide in the distributed burning regime. The diamonds denote the simulations from

Paper I, and the squares denote the simulations from the present paper (to be defined below).

The circle denotes the intersection of the Ka = 230 line with DaT = 1, which denotes the

λ-point, where the turbulent intensity and integral length scale are equal to the turbulent

flame speed (sλ) and width (lλ), respectively.

We emphasize that the λ-flame speed and width are local measures, i.e. the flame burns

at sλ on a scale of lλ. These quantities will also vary due to turbulent intermittency. The

λ-flame will respond to the local turbulence, specifically ε on the scale of lλ. Note that due to

this response, the turbulent Gibson scale lTG = s3

λ/(ǔ3/l) is equal to the λ-flame width, lTG = lλ,

and the Karlovitz number based on the λ-flame is always one, i.e. Ka2

λ ≡ (ǔ3lλ)/(s3

λl) ≡ 1.

The overall turbulent flame speed will be greater than sλ due to enhanced flame surface

area, and will resemble Damköhler’s large-scale turbulence regime, due to the presence of

multiple λ-flames across an integral length scale. Following Peters (1999), for example,

the following simple expression, based on an enhanced flame surface area, can be used to

illustrate the scaling behavior in this regime,

sT

sλ
= 1 +

ǔ

sλ
. (5)

Specifically, in the limit of high Damköhler number, the turbulent burning speed tends to

the turbulent intensity, i.e. sT → ǔ as DaT → ∞.

In the next section, we present calculations to investigate the turbulent flame speed as

a function of Damköhler number for a high Karlovitz number flame. Specifically, we are

looking for a relation of the form
sT

ǔ
= ϕ (DaT ) , (6)

for some dimensionless function ϕ. Three burning regimes are to be expected. First, for

DaT
<
∼1, the turbulent flame speed and width are predicted to scale with

sT

ǔ
= Da

1/2

T , and
lT
l

= Da
−1/2

T . (7)
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Second, for DaT ≈ 1, the flame is predicted to reach a limiting behavior with speed sλ and

width lλ (on the scale of lλ). Finally, for DaT ≫ 1, the flame is predicted to burn as a

λ-flame, where the overall flame speed is expected to be a few times the turbulent intensity,

tending towards it as DaT tends to infinity.

2.3. The Turbulent Nuclear Time Scale

Previous work has implicitly assumed that the nuclear time scale remains unaffected

by the turbulence, again see Peters (1999) or Peters (2000). This was the case in Röpke &

Hillebrandt (2005), where the relation

sT

sL
∼

(

DT

DL

)1/2

∼

(

ǔl

sLlL

)1/2

, (8)

was used to derive a turbulent flame speed for a level-set method. However, as discussed in

Paper I, due to the different distributions of carbon and temperature, the nuclear time scale

is around an order of magnitude longer in the turbulent case. Allowing for different nuclear

time scales, equation (8) becomes

sT

sL

=

(

ǔl

sLlL

)1/2 (

τL
nuc

τT
nuc

)1/2

. (9)

In Paper I, the turbulent nuclear time scale was estimated using lT /sT , based on an estimate

of the turbulent flame width. It was shown that this reduces the estimate for the turbulent

flame speed in equation 9 by a factor of approximately σ1/2 ≈ 0.3. A more refined approach

for estimating τT
nuc

is given below.

A corollary to the relation Da2

T Ka2

T = 1, is that the turbulent nuclear time scale can

be derived from a single measurement in the well-stirred reactor regime, specifically, the

turbulent flame speed and properties of the turbulence alone. In particular, if we consider

a reference case that is easily computed (e.g. case (e) from Paper I), where the turbulent

intensity is ǔ0 and integral length scale l0, then only the turbulent flame speed s0

T needs

to be measured. Assuming that the limiting nuclear time scale has been achieved, then

the relation Da2

T Ka2

T = 1 means that the turbulent flame width is l0T = ǔ0l0/s
0

T , and the

turbulent nuclear time scale is τT
nuc

= l0T /s0

T = ǔ0l0/s
0

T
2
. For case (e) in Paper I, this gives

lT ≈ 190cm, τT
nuc

≈ 0.0098s, and σ ≈ 0.067 (which gives σ1/2 ≈ 0.26).
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3. SIMULATION DESCRIPTION

3.1. Three-Dimensional Simulations

As in Paper I, we use a low Mach number hydrodynamics code, adapted to the study

of thermonuclear flames, as described in Bell et al. (2004). The advantage of this method is

that sound waves are filtered out analytically, so the time step is set by the the bulk fluid

velocity and not the sound speed. This is an enormous efficiency gain for low speed flames.

The input physics used in the present simulations is largely unchanged, with the exception of

the addition of Coulomb screening, taken from the Kepler code (Weaver et al. 1978), to the
12C(12C,γ)24Mg reaction rate. This yields a small enhancement to the flame speed, and is

included for completeness. The conductivities are those reported in Timmes (2000), and the

equation of state is the Helmholtz free-energy based general stellar EOS described in Timmes

& Swesty (2000). We note that we do not utilize the Coulomb corrections to the electron

gas in the general EOS, as these are expected to be minor at the conditions considered.

The basic discretization combines a symmetric operator-split treatment of chemistry and

transport with a density-weighted approximate projection method. The projection method

incorporates the equation of state by imposing a constraint on the velocity divergence. The

resulting integration of the advective terms proceeds on the time scale of the relatively slow

advective transport. Faster diffusion and chemistry processes are treated time-implicitly.

This integration scheme is embedded in a parallel adaptive mesh refinement algorithm frame-

work based on a hierarchical system of rectangular grid patches. The complete integration

algorithm is second-order accurate in space and time, and discretely conserves species mass

and enthalpy. The details of the adaptive incompressible flow solver can be found in Almgren

et al. (1998), the reacting flow solver in Day & Bell (2000), extension to generalized equation

of state in Bell et al. (2004), and an application to the Rayleigh-Taylor instability in type Ia

SNe in Zingale et al. (2005).

The non-oscillatory finite-volume scheme employed here permits the use of implicit

large eddy simulation (iles). This technique captures the inviscid cascade of kinetic energy

through the inertial range, while the numerical error acts in a way that emulates the dissi-

pative physical effects on the dynamics at the grid scale, without the expense of resolving

the entire dissipation subrange. An overview of the technique can be found in Grinstein

et al. (2007). Aspden et al. (2008b) presented a detailed study of the technique using the

present numerical scheme, including a characterization that allowed for an effective viscosity

to be derived. Thermal diffusion plays a significant role in the flame dynamics, and so is

explicitly included in the model, whereas species diffusion is significantly smaller, and so is

not explicitly included.
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The turbulent velocity field was maintained using the forcing term used in Paper I and

Aspden et al. (2008b). Specifically, a forcing term was included in the momentum equations

consisting of a superposition of long wavelength Fourier modes with random amplitudes

and phases. The forcing term is scaled by density so that the forcing is somewhat reduced

in the ash. This approach provides a way to embed the flame in a zero-mean turbulent

background, mimicking the much larger inertial range that these flames would experience in

a type Ia supernova, without the need to resolve the large-scale convective motions that drive

the turbulent energy cascade. The effects of resolution were examined in detail in Aspden

et al. (2008b), where it was demonstrated that the effective Kolmogorov length scale is

approximately 0.28∆x, and the integral length scale is approximately a tenth of the domain

width. This is particularly relevant to the present study, because turbulence is the dominant

mixing process. This means that the iles approach can be used to capture the effects of

turbulent mixing, which occurs on length scales much larger than the actual Kolmogorov

length scale in the star.

Figure 3 shows the simulation setup. The simulations were initialized with carbon fuel

in the lower part of the domain and magnesium ash in the upper, resulting in a downward

propagating flame. A high-aspect ratio domain was used to allow the flame sufficient space

to propagate. Periodic boundary conditions were prescribed laterally, along with a free-slip

base, and outflow at the upper boundary.

3.2. One-Dimensional Simulations Using the Linear Eddy Model

Simulations were also run using the Linear Eddy Model (LEM) of Kerstein (1991).

This approach simulates the evolution of scalar properties in a one-dimensional domain,

which can be interpreted as a line of sight through a three-dimensional turbulent flow.

Diffusive transport and chemical reactions are coupled in a model that represents the effects

of real three-dimensional eddies through a so-called “triplet map”. The advantage of LEM

is that much finer resolution and larger length scales can be explored inexpensively. This

is particularly important for the present problem, where the range of length scales is very

large and the degree of turbulence very high. LEM has been successfully applied to a large

range of phenomena, especially turbulent terrestrial combustion. Its disadvantage is that

when applied to a novel environment like a supernova, there are two overall normalization

factors that must be adjusted, the effective turbulent dissipation rate and the integral scale.

By using LEM for the present problem, we hope to satisfy two goals - first to show that

very similar answers are obtained using quite different techniques and second, to calibrate

the uncertain constants in LEM for the supernova problem.
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LEM has previously been compared with the same three-dimensional code in Woosley

et al. (2009). When the nuclear physics and fuel temperature were adjusted to be the same,

it was found that best agreement occurred for an LEM constant C = 11 and an integral scale

in LEM that was three times that in the numerical simulation. Those same values are used

here except that C has been assumed to be 10. As expected, this prescription gives excellent

agreement in the well-stirred reactor regime where it was calibrated, but, as we shall see

underestimates the flame speed by as much as a factor of two in the stirred-flame regime.

Thus a normalization that depends on DaT is appropriate, and C = 3 to 5 for DaT > 1.

4. RESULTS

4.1. Three-Dimensional Results

The high Karlovitz case from Paper I was used as the starting point for the present study,

and is referred to here as case (a). Because turbulent diffusion dominates the mixing of fuel

and temperature, the resolution requirements are significantly relaxed – thermal diffusion has

to be resolved to capture the laminar flame correctly, but the turbulent diffusion coefficient is

much larger, and so fewer cells are required to resolve it. In fact, keeping ε∗ constant means

that the diffusion coefficient scales with DT ∼ l4/3, and a mixing length can be defined

analogous to the Kolmogorov length scale ηD = (D3

T /ε∗)1/4, which scales as ηD ∼ l. Thus,

the smallest scales that need to be resolved become larger as the domain size grows.

The approach taken to achieve larger Damköhler numbers (i.e. larger length scales) was

to start with case (a), which has a domain width of 1.5 × 102cm, and run the same case at

an eighth of the resolution, i.e. with a low-resolution cell width of ∆xLR = ∆xHR/8. The

turbulent flame speed was used as the primary diagnostic. Agreement in the turbulent flame

speed provides confidence in capturing the effects of turbulent mixing (relying on the iles

approach) with the new cell width; it is the turbulent flame speed that is of primary interest.

A higher Damköhler number was then achieved by running in a domain eight times larger

with the new cell width, i.e. with a domain size of 1.2× 103cm. The turbulent intensity was

adjusted accordingly to keep ε∗ = ǔ3/l constant (i.e. an eight-fold increase in length scale

corresponds to a two-fold increase in velocity). The whole process was then repeated several

times to reach a domain size of 6.14× 105cm, and span a range of Damköhler numbers from

the base case of DaT ≈ 0.0064 to DaT ≈ 1.68, corresponding to cases (a) through (e).

For larger length scales, the above argument no longer applies because the diffusion

coefficient responsible for mixing fuel and temperature is approximately sλlλ and does not

scale with ǔl for DaT
>
∼1; even case (e) is questionably resolved. However, we have included
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simulations (f) and (g) at Damköhler numbers 6.6 and 26, respectively, as an indication of

what we can expect for DaT
>
∼1. The simulation properties are summarized in table 1.

Figure 4 shows slices of density (top) and fuel consumption rate (bottom) for the seven

cases (a)-(g) left-to-right. Note that the domain size increases by a factor of 8 each time.

All of the figures have been normalized by the same values. Case (a) presents an extremely

broad mixing region (much broader than the integral length scale), and the burning can

be seen to occur at the high temperature (low density) end of the mixing zone. As the

Damköhler number is increased, the relative width of the flame brush decreases as expected.

Although the width of the flame brush appears to decrease, it actually increases, just more

slowly than the domain size. For DaT
>
∼1, there appears to be a sharp interface between the

fuel and products. This is because of the underresolved nature of the flames - the actual

flame will be a broad mixing zone, but is not fully-captured here.

Figure 5 shows the turbulent flame speed evolution for the seven cases. The flame speed

is evaluated by finding the rate of change of the total fuel mass in the domain divided by

the product of the cross-sectional area of the domain and the fuel density,

sT =
1

A(ρXC)0

d

dt

∫

V

ρXC dV . (10)

The time scale has been normalized by the eddy turnover time τT = l/ǔ. The solid lines

denote the simulations at the full resolution (2562 cells in cross-section), and the dashed

lines denote the simulations at the low resolution (322 cells in cross-section). In most cases

the low resolution simulations are in good agreement with the high resolution simulations

(the only real outlier is case (d) where the low resolution simulation over-predicts the flame

speed by 48%). Table 2 shows the mean flame speeds at both resolutions in each case.

Figure 6 shows the turbulent burning speeds normalized by the turbulent intensity as a

function of Damköhler number. Case (a) is the low Damköhler number on the left, increasing

to the right to case (g). The marker denotes the mean in each case, and the vertical line

denotes the range of values obtained during the averaging period (note that it is not the

standard deviation). The solid line is the expected scaling relation from equation 7. The

dashed lines denote DaT = 1 and sT = ǔ, where the scaling relation is predicted to break

down. Cases (a)-(e) are in very good agreement with the predicted scaling. We note that

for cases (d) and (e), the flame speed measured is enhanced by the area of the flame that is

burning, which can be increased by turbulence here because the flame brush is now smaller

than the domain width; this explains the higher speeds obtained. The flames in these cases

are too convoluted to extract a flame area to normalize by. Despite being significantly

underresolved, cases (f) and (g) appear to show the expected break-down of the Damköhler

scaling; for DaT
>
∼1, the turbulence cannot enhance the flame speed according to equation
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(7), and the normalized flame speed ceases to grow.

Figure 7 compares the volumetric rate of burning for cases (f) and (g). Because these

two cases are much less convoluted than cases (a)-(e) it was possible to extract an isosurface

based on a temperature of 109K. The solid line denotes the measured turbulent flame speed

multiplied by the cross-sectional area of the domain, the dashed line denotes the measured

flame surface area times the predicted burning speed sλ. It appears that the flame speed is

over-predicted in case (f) and under-predicted in case (g); the dash-dotted line denotes this

speed multiplied by a factor of 0.67 for case (f) and 2.16 for case (g). We speculate that the

disagreement is due to the underresolved nature of these cases, but maintain that sλ is still

a reasonable estimate for a turbulent flame model.

4.2. One-Dimensional Results

LEM was used to simulate the same conditions as in Table 1 except that in each case the

integral scale was multiplied by three and finer resolution was employed (Table 3). Roughly

40,000 time points were sampled for each case. The average flame speeds are plotted in Figure

6. For DaT
<
∼1, the agreement with the three-dimensional simulations is excellent. Both show

the same scaling relation as well as agreeing on the actual value of the speed. However, at

large values of DaT , the LEM results are almost a factor of two smaller. There could be

several reasons for this. First, there are fundamental differences in the two approaches.

LEM does not capture all of the multi-dimensional effects and has not been calibrated for

this regime. Second, the resolution of the three-dimensional study is low and not all burning

structures are well resolved. Studies with LEM suggest a mild dependence of sT on the

resolution with slower speeds at higher resolution.

4.3. Variability of the Turbulent Flame Speed

Figure 8 compares the probability density functions (PDFs) of the normalized local burn-

ing rate in the three-dimensional and LEM calculations. To compare the three-dimensional

results as closely as possible with LEM, the PDFs were evaluated by integrating the fuel

consumption along line-outs, i.e. over individual columns of data as a function of height.

Each PDF was then normalized by the mean burning speed. The PDFs have been shifted

along the y-axis for clarity. In case (a), the PDF has a narrow Gaussian distribution cen-

tered around the mean flame speed. As the Damköhler number increases, the PDF becomes

broader, i.e. a greater range of burning rates is observed locally.
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Both studies show a strong dependence of the spread of the PDF on Damköhler number.

In the well-stirred reactor (DaT < 1), the integral scale is less than the flame width. Many

eddies turn over on the largest scale as burning moves through a region. The relation between

temperature, carbon mass fraction, and location is smooth and the burning time well defined.

There is only one flame structure. Consequently the speed does not vary greatly from the

average.

In the stirred flame, however, there are multiple regions of burning. Sometimes the

burning is very fast, especially when a large single eddy envelops a new region of fuel. At

other times it, almost goes out. The PDF thus shows a large spread in speed. Occasionally,

the overall burning proceeds at a rate that is 2.5 to 3 times the average. Since the average

itself if roughly twice ǔ, this implies an overall burning rate up to six times ǔ.

5. CONCLUSIONS

New one- and three-dimensional simulations have been presented to clarify and quantify

the nature of carbon burning in a Type Ia supernova in the distributed burning regime. The

characteristics of distributed burning depend upon the Damköhler number, and a range of

DaT from 0.006 to 26 has been explored. For Da<
∼1, the expected scaling relations were

demonstrated,
sT

ǔ
= Da

1/2

T , and
lT
l

= Da
−1/2

T . (11)

For DaT
>
∼1, these relations break down and the turbulent flame reaches a maximum

local flame speed sλ and width lλ, measured on the scale of lλ. This λ-flame interacts with

turbulent eddies with length scales between lλ and the integral length scale l, which enhances

the flame surface area. The average turbulent flame properties are constrained by the large

scales (see also Woosley et al. 2009). This leads to an average overall turbulent flame speed,

which to factor-of-two accuracy is given by the turbulent intensity, ǔ. For the range of Da>
∼1

studied here, a good approximation is sT = 2ǔ.

5.1. Consequences for Large-Scale Simulations

Large-scale simulations (i.e. of a full-star) will require a turbulent flame model. One

of the consequences of the results presented here is that the λ-flame is ideally suited to the

level-set approach, as it burns locally with speed sλ. This means that a turbulent flame speed

can be evaluated in the following manner. Assume that the turbulence is sufficiently large
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and intense, i.e. in the stirred-flame regime (DaT > 1 and Ka >
∼10). Then the turbulence can

be characterized by the energy dissipation rate ε∗ = ǔ3/l, and the burning depends on the

turbulent nuclear burning time scale τT
nuc

. The nuclear burning time scale is equal to lλ/sλ

and the turbulent intensity at the length scale of the λ-flame is sλ and so ε∗ = s3

λ/lλ. Solving

for sλ and lλ gives

sλ =
√

ε∗τT
nuc

, and lλ =

√

ε∗τT
nuc

3. (12)

Note these expressions do not require a fixed Karlovitz number (it’s incorporated by ε∗), and

the the length scale is the same as predicted in Paper I. To implement a level-set approach for

a λ-flame, τT
nuc

should be evaluated as a function of fuel density and temperature (using the

approach outlined in section 2.1 or Woosley et al. (2009)) and coupled with the (local) energy

dissipation rate to evaluate the λ-flame speed according to equation (12). If the resolution

requirements of Paper I were applied to the λ-flame recovered in the present paper (i.e.

lλ ≈ 4∆x with 2562 cells in cross-section), an integral length scale could be achieved that is

of order thousands of times larger than the original study.

5.2. Consequences for Detonation

The instantaneous flame speed for DaT
>
∼1 is irregular, with frequent excursions up to 2.5

times the average, which is approximately twice the turbulent intensity for the simulations

presented here. These variations could be crucial if a transition to detonation is to occur.

Detonation will not happen in the laminar regime, i.e. at high density, because each flamelet

burns at a steady rate and has a thickness that is far below the critical mass for detonation.

It is also unlikely to happen in the well-stirred reactor regime, because the burning is steady

and slower than the turbulence on the integral scale, which in turn is subsonic. The burning

time scale is very long in the well-stirred regime, making it very difficult to burn, for example,

a 10 km region on a sound crossing time.

Thus if detonation is to occur spontaneously, it is likely to happen in the stirred-flame

regime. Even there though, DaT should not be too large, or the mixed regions will not burn

supersonically (recall sT → ǔ for large DaT ). The best conditions therefore occur where

there are multiple λ-flames across an integral length scale, i.e. for small DaT
>
∼1 (Woosley

2007; Woosley et al. 2009). The calibration of LEM determined by comparison with the

three-dimensional studies suggest a normalization constant of C = 5 is most appropriate for

Da > 1 and this is the value used by Woosley et al. (2009). This strengthens their conclusion

that a detonation is possible if ǔ exceeds about one-fifth sonic.
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Fig. 1.— Joint probability density function of fuel and temperature from case (e) in Paper I.

The solid red line shows the distribution from the flat laminar flame where thermal diffusion

is the dominant mixing process. The solid black line shows the distribution of fuel burning

isobarically with no thermal or species diffusion.
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Fig. 2.— Regime diagram based on Peters (1999, 2000). Here we emphasize the separation

of the distributed burning regime into the well-stirred reactor and stirred-flame regimes by

the turbulence Damköhler number DaT = 1. (LF - Laminar Flames, WF - Wrinkled Flames,

CF - Corrugated Flames, TRZ - Thin Reaction Zone, WSR - Well-Stirred Reactor, SF -

Stirred Flame). Together the WSR and SF regimes make up the distributed burning regime.

The diamonds denote the simulations from Paper I, and the squares denote the simulations

from the present paper. The circle denotes the intersect of the Ka = 230 line with DaT = 1,

which denotes the λ-point, where the turbulent intensity and integral length scale are equal

to the turbulent flame speed (sλ) and width (lλ), respectively.
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Fig. 3.— Diagram of the simulation setup (shown in two-dimensions for clarity). The domain

is initialized with a turbulent flow and a flame is introduced into the domain, oriented to that

the flame propagates toward the lower boundary. The turbulence is maintained by adding a

forcing term to the momentum equations. The top and bottom boundaries are outflow and

solid wall boundaries, respectively. The side boundaries are periodic.
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Fig. 4.— Two-dimensional slices showing density (top) and fuel consumption rate (bottom)

for all cases (a)-(g) (left-to-right). All of the figures have been normalized by the same values.

It is important to note the domain increases by a factor of 8 each time. In particular, the

domain size in the final case is over two hundred and fifty thousand times larger than the

first case; despite the burning rate looking reduced, it is actually greatly increased.
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τT . The solid lines denote the simulations at the full resolution (2562 cells in cross-section),

and the dashed lines denote the simulations at the low resolution (322 cells in cross-section).
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Fig. 6.— Turbulent flame speeds normalized by turbulent intensity sT /ǔ as a function

of turbulent Damköhler number DaT . The solid black line denotes the expected scaling

behavior for DaT
<
∼1, bounded by the dashed lines. The flame speeds appear to be in good

agreement with the predicted scaling, and despite the lack of resolution, appear to roll over

when DaT
>
∼1. The crosses denote the mean speeds from the LEM calculations.
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Fig. 7.— Volumetric rate of fuel consumption. The solid line is the measured rate AsT ,

where A is the cross-sectional area, the dotted line is the product of the limiting flame speed

sλ with the measured flame surface area, and the dash-dotted line is the latter adjusted by

a factor of 0.67 for case (f) and 2.16 for case (g). There is a definite correlation between

the flame surface area and the fuel consumption, but the estimate sλ appears to be an over-

prediction for case (f) and an under-prediction for case (g). We speculate that this is due

to the underresolved nature of these cases and that sλ is still a reasonable estimate for a

turbulent flame model.
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(solid) and LEM (dashed) calculations. Each case has been shifted along the y-axis for

clarity.
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Case (a) (b) (c) (d) (e) (f) (g)

Domain width, L (cm) 1.5 × 102 1.2 × 103 9.6 × 103 7.68 × 104 6.14 × 105 4.92 × 106 3.93 × 107

Domain height, H (cm) 1.2 × 103 4.8 × 103 3.84 × 104 3.07 × 105 2.46 × 106 1.97 × 107 1.57 × 108

Integral length scale, l (cm) 1.5 × 101 1.2 × 102 9.6 × 102 7.68 × 103 6.14 × 104 4.92 × 105 3.93 × 106

Turbulent intensity, ǔ (cm/s) 2.47 × 105 4.93 × 105 9.86 × 105 1.97 × 106 3.95 × 106 7.89 × 106 1.58 × 107

Laminar Damköhler, DaL 9.32 × 10−2 3.73 × 10−1 1.49 × 100 5.97 × 100 2.39 × 101 9.54 × 101 3.82 × 102

Turbulent Damköhler, DaT 6.23 × 10−3 2.49 × 10−2 9.97 × 10−1 3.99 × 10−1 1.60 × 100 6.38 × 100 2.55 × 101

High resolution (N = 256) ∆xHR (cm) 5.86 × 10−1 4.69 × 100 3.75 × 101 3.00 × 102 2.40 × 103 1.92 × 104 1.54 × 105

Low resolution (N = 32) ∆xLR (cm) 4.69 × 100 3.75 × 101 3.00 × 102 2.40 × 103 1.92 × 104 1.54 × 105 1.23 × 106

Table 1: Simulation properties.
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Case (a) (b) (c) (d) (e) (f) (g)

High resolution (cm/s) 1.84 × 104 8.10 × 104 3.51 × 105 1.56 × 106 5.94 × 106 1.66 × 107 3.49 × 107

Low resolution (cm/s) 1.86 × 104 8.57 × 104 3.91 × 105 2.31 × 106 6.5 × 106 1.62 × 107 3.16 × 107

Percentage error 1.1 5.8 11.4 48.1 9.4 -2.4 -9.5

Table 2: Measured turbulent flame speeds.
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Case (a) (b) (c) (d) (e) (f) (g)

Turbulent intensity, ǔ (cm/s) 2.47 × 105 4.93 × 105 9.86 × 105 1.97 × 106 3.95 × 106 7.89 × 106 1.58 × 107

Integral length scale, l (cm) 4.50 × 101 3.60 × 102 2.88 × 103 2.30 × 104 1.84 × 105 1.48 × 106 1.18 × 107

Resolution, ∆x (cm) 4.89 × 10−1 2.93 × 100 1.47 × 101 9.77 × 101 7.32 × 102 2.44 × 103 2.44 × 104

Average speed (cm/s) 1.96 × 104 7.26 × 104 2.50 × 105 8.70 × 105 2.85 × 106 8.36 × 106 2.14 × 107

Table 3: Characteristics of LEM studies.
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