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Abstract. The explosion of a Type Ia supernova (SNIa) begins as a turbulent flame deep
within a 1.4 solar-mass white dwarf. Initially the burning happens in the flamelet regime
where turbulence only serves to wrinkle and fold an essentially laminar burning front. However,
as the star expands and the flame moves outwards, it encounters regions of lower density.
At ∼ 2 × 107g cm−3, the flame transitions to a distributed burning regime. Here individual
flamelets are disrupted by turbulent eddies, resulting in a fundamental change in the character
of the burning. Detonation does not occur immediately because the turbulently broadened
flamelets are still too thin. As the density declines further, however, each flamelet thickens
and moves faster until only a few structures are contained within the ∼ 10 km integral scale
of the SN turbulence. It is here that detonation may occur. We present simulations using
both a three-dimensional low Mach number model and a one-dimensional linear eddy model to
explore the structure of these flames and quantify their scaling behavior. Our results suggest
that detonation may be possible at a density near 1.0 × 107 g cm−3.

1. Introduction

It is widely believed that in order to explain the observations of especially the brightest Type Ia
supernovae, nuclear burning that remains subsonic at all times (deflagration) is inadequate [1, 2].
There must be, at late times after the star has already expanded significantly, a transition to a
more rapid form of burning, i.e., detonation. So far, “delayed detonation” has been introduced
into the models as a free parameter, typically an ad hoc function of density and turbulent energy
[1, 3]. We seek here to understand the physics of the transition and to determine the conditions.

Two previous papers explored the conditions that might lead to a low-density transition to
detonation [4] and the nature of turbulent carbon burning resolved in 3D [5]. Here we focus on
flames with a fuel of 50% carbon and 50% oxygen at a density of 1×107g cm−3, which corresponds
to the distributed regime. Through a sequence of simulations, we explore the scaling behavior
of flames in this regime and compare the behavior with results using the Linear Eddy Model
(LEM;[6]) and with Damköhler scaling [7]. Having verified the 1D LEM, calculations are carried
out on still larger scales. We find a transition in the nature of the burning when the size of an
eddy that can burn in a turnover time becomes of order the integral scale [8, 9].



Case (a) (b) (c) (d) (e)
Domain size L (cm) 150 1200 9600 8.0×104 3.27×106

Integral length scale l (cm) 15 120 960 7680 4.92 ×105

Turbulent intensity u′ (cm/s) 2.47×105 4.93×105 9.86×105 1.97×106 7.89×106

Scaled turbulent speed s∗T (cm/s) 1.9×104 7.6×104 3.04 × 105 1.21×106 1.95×107

Scaled turbulent width l∗T (cm) 140 560 2240 8960 3.58×104

3D-sim turbulent speed sT (cm/s) 1.9×104 7.7×104 3.4×105 - -
3D-sim turbulent width lT (cm) 140 750 3200 - -
LEM calculated speed s∗T (cm/s) 1.5×104 6.1×104 2.3×105 8.2×105 1.1×107

Table 1. Simulation properties - “scaled” values assume Damköhler scaling (l2/3) based on case
(a) [5].

2. Methodologies

The three-dimensional simulations are based on the low Mach number model derived from the
compressible flow equations using asymptotic analysis to decompose the pressure into dynamic
and thermodynamic components. This analytically removes acoustic waves, and therefore the
need to resolve them numerically; the equation of state constrains the evolution. The low Mach
number equations are discretized using a fractional-step, projection algorithm and coupled to
a parallel adaptive mesh framework. For details of the derivation of the method for general
equations of state and the numerical method, see [10].

The Linear Eddy Model [6] is a numerical technique that captures many of the aspects of 3D
turbulence on a 1D grid. A background isotropic turbulence obeying Kolmogorov statistics is
assumed and the action of eddies on a field of abundances and temperature is represented by an
instantaneous map (a so called triplet map). Eddy locations are random and size sampling is
based on Kolmogorov scaling. The triplet map captures compressive strain and rotational folding
effects of eddies and causes no property discontinuities. This approach simulates evolution along
a 1D line-of-sight through a 3D flow.

3. Computations and results

3.1. 3D direct numerical simulations

We initialized the simulations (Table 1) with the flat laminar flame in a three-dimensional domain
initially filled with homogeneous isotropic turbulence. The flame is oriented so that it propagates
downward, although gravitational forces are not included. Periodic boundary conditions were
prescribed laterally, a free-slip base, and outflow at the upper boundary. The turbulent velocity
field was maintained, following [11], by forcing the momentum equations with a superposition of
long wavelength Fourier modes with random amplitudes and phases. The forcing term is scaled
by density and so is somewhat reduced in the ash. This approach provides a way to embed the
flame in a localized turbulent background, mimicking the much larger inertial range that these
flames would experience in a SNIa.

Calculations were carried out for several values of integral scales assuming a constant energy
dissipation of u′3/l = 1015 erg g−1 s−1. This is on the low end of turbulent intensities expected
in an actual supernova [12]. We began with the distributed flame from [5], which has an effective
cross-section resolution of 256×256 zones and size 150×150 cm. By demonstrating that we can
approximately recover the same turbulent flame speed when the simulation is repeated at a
resolution coarsened by a factor of 8 in each direction, we established confidence in simulations
with that cell width. Therefore, we can simulate a distributed flame in a 12×12 m domain. This
step is then repeated to obtain even larger domains

Fig. 1 shows instantaneous vertical slices of fuel consumption rate (intense burning in red,
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Figure 1. Instantaneous vertical slices of fuel consumption rate (intense burning in red, no
burning in blue). The whole domain width is shown but the height is cropped.

no burning in blue). As the flame burns in increasingly larger integral length scales, there is
a decrease in the relative size of the flame structures, with burning occurring in distributed
pockets. Fig. 2 shows that the flame speed, averaged across the burning volume, is nearly
constant after a start up transient. Moreover, taking the l = 15 cm case as a base state [5], the
steady state speed scales as l2/3, the expected scaling for a diffusive flame in which the diffusion
coefficient is dominantly due to turbulence (D ∼ u′l). This scaling must eventually break down
due the restriction sT ≤ u′.

3.2. 1D results using LEM

Table 1 shows that LEM is able to reproduce well the bulk speeds and widths of the flames
calculated in 3D. The speed also obeys Damköhler scaling, but is, over all, a little smaller
than the DNS results. Near perfect agreement could have been achieved (but was not) by an
adjustment of a parameter in LEM. Heartened by the agreement, we used LEM to explore flame
properties on larger length scales than could be done at high resolution in 3D, to 10 km and
beyond. Zoning ranged from 0.24 cm for l = 15 cm (2048 zones) to 50 cm for l = 4.5 km
(65536 zones). Until 4.5 km, the l2/3 scaling found for smaller integral scales is approximately
maintained, but a little below that length scale the flame speed saturates at u’. Above that
value, the width and speed are found to scale as l1/3, i.e., the turbulent flame speed remains
pegged to the the overall turbulent speed on the integral scale. As the integral speed approaches
this value, the flame front became complex (Fig 2) and the burn rate irregular. Variations
in integrated burning rate of about a factor of three were observed (the values in Table 1 are
averages), and the carbon mass fraction in the burning region was about three times less than
that in the fuel, corresponding to an overall reduction in burning time scale of a factor of 9.

4. Conclusions

Figure 3 [9] summarizes our conclusions and shows where and how detonation might happen
in a SNIa. The Karlovitz number is defined as Ka = (lL/lG)1/2, where lL is the laminar flame
thickness (where one exists), and lG is the Gibson scale. For Ka < 1, one has laminar flames,
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Figure 2. Left: Turbulent flame speeds from three-dimensional simulations. Solid lines
denote high resolution simulations (256 zones across), dashed lines denote low resolution (LR)
simulations (32 zones across). Colors denote same cell width. Dashed lines are turbulent flame
speeds predicted by Damköhler scaling. Right: A calculation using LEM of a single flame for an
integral scale of 4.92 km at a density 1× 107 g cm−3. The turbulent speed on that scale is 78.9
km s−1 and the average flame speed and width are also close to these values. Many complex
and folded structures are seen, but occasionally surprisingly homogeneous, isothermal regions
appear. Red is carbon mass fraction and black is the temperature.

folded and deformed by turbulence, but each still well defined. No detonation is possible in this
regime. The overall burning moves at approximately u∗, the characteristic speed of turbulence
on the integral scale of the supernova, L∗, and the individual flamelets serve only to “digest” the
entrained fuel. The number of such flames contained within the integral scale is approximately
n ≈ u∗/sL, with sL the laminar flame speed, and so can be very large. Above Ka = 10 (shown
on Fig. 3), turbulence tears individual flamelets and dominates the heat transport. This is the
region delimited and studied here in our 3D simulations. For typical turbulence parameters,
L∗ = 10 km and u∗ = 100 km s−1, we find that the transition to “distributed burning” happens
at about 2 × 107 g cm−3.

For lower densities or higher turbulent speeds, Ka > 10, i.e., as the supernova expands further,
one still has a large collection of flamelets within L, but each flamelet becomes broadened
and accelerated by the turbulence. At a given density and turbulent energy dissipation,
ε = u∗3/L∗ ∼ 1015 − 1018 erg g−1 s−1 for u∗ = 100 to 1000 km s−1, there is a characteristic
length scale, λ = (τ3

nucε)
1/2 [8, 4]. This is the size of an eddy that will burn in a turnover

time (a macroscopic analogue, for turbulent flames, of the Gibson length). The characteristic
nuclear time, τnuc, is evaluated in our studies and is τnuc = lT /sT in Table 1. There is only one
physical integral scale in the supernova, L∗ ∼ 10 km, but we explored the scaling properties
of the turbulent flame speed and width by varying a fictitious integral scale, l, subject to the
constraint ε = constant (Table 1), confirming the expected Damköhler scaling, sT ∝ l2/3 and
lT ∝ l2/3 so long as l < λ. The ratio (L∗/λ)2/3 = L∗/(u∗τnuc) is also known as the Damköhler
Number.

So long as Da ≫ 1, i.e., λ ≪ L∗, there are still many turbulently broadened flamelets, each of
width ∼ λ, contained within the integral scale. Stochastic variations in the speeds of individual
flamelets will tend to cancel out because

√
n is large. However, as Da approaches unity, the

flamelets become fewer and broader, and move faster. Eventually, at Da = 1, there is, on the
average, only one flame with width L∗ and speed u∗. It is here that our studies with LEM show



that the overall flame speed exhibits large fluctuations. The flame structure is very complex
with transient large regions of mixed fuel and ash. “Microexplosions” occur as these pockets
burn nearly coherently.

Figure 3. Regions of distributed burning. The
y-axis is the log of the turbulent speed on an
integral scale, L∗, assumed to be 10 km, and
the x-axis is density. The lowest dashed line
is Ka = 10. Below this line, one is in the
laminar flamelet regime. The solid and dot-
dashed slowly rising lines are Da = 1 and 2
respectively. The solid and dot-dashed nearly
horizontal lines are sound speed divided by 5
(lower line) and 10. See [9] and text.

Increasing the turbulence still further, or
decreasing the density (hence increasing τnuc

and λ and decreasing Da below 1), does not
help. One would then get a single turbulently
broadened flame with width λ > L∗, and
speed < u∗, similar to the ones studied here
in 3D. Thus if detonation is to happen, it
happens for Da ≈ 1 - 10. Our studies
with LEM [9] show that the maximum boost
from the irregular burning of the flame in
this regime corresponds to a reduction in
burning time scale of at most a factor of 9.
Thus to get supersonic burning, one must
also have turbulent speeds no slower than
about 10% sonic [12]. Finally the region that
burns faster than sound must large enough to
initiate a self-sustaining detonation [4]. Our
calculations show that all these conditions
may be simultaneously satisfied at 107 g cm−3,
though not by a large margin.
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[10] Bell J B, Day M S, Rendleman C A, Woosley S E and Zingale M A 2004 Journal of Computational Physics

195 677–694
[11] Aspden A J, Nikiforakis N, Dalziel S B and Bell J B 2008 Submitted for publication
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