
On Using a Fast Multipole Method-based Poisson Solver in an Approximate Projection

Method

Sarah A. Williams∗

Ann S. Almgren†

E. Gerry Puckett∗

Abstract

Approximate projection methods are useful computational tools for solving the equations of time-

dependent incompressible flow. In this report we will present a new discretization of the approximate

projection in an approximate projection method. The discretizations of divergence and gradient will be

identical to those in existing approximate projection methodology using cell-centered values of pressure;

however, we will replace inversion of the five-point cell-centered discretization of the Laplacian operator by

a Fast Multipole Method-based Poisson Solver (FMM-PS).

We will show that the FMM-PS solver can be an accurate and robust component of an approximation

projection method for constant density, inviscid, incompressible flow problems. Computational examples

exhibiting second-order accuracy for smooth problems will be shown. The FMM-PS solver will be found

to be more robust than inversion of the standard five-point cell-centered discretization of the Laplacian for

certain time-dependent problems that challenge the robustness of the approximate projection methodology.

∗Department of Mathematics, University of California, Davis
†Lawrence Berkeley National Laboratory

1

This document was prepared as an account of work sponsored by the United States Government.

While this document is believed to contain correct information, neither the United States Government nor

any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any

warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness

of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product, process, or service by its trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or any agency thereof, or The Regents of

the University of California. The views and opinions of authors expressed herein do not necessarily state or

reflect those of the United States Government or any agency thereof, or The Regents of the University of

California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

2

1 Introduction

Projection methods have been used for decades to solve time-dependent incompressible flow problems. In-

troduced as a first-order accurate method for solving constant density incompressible flows [11], projection

methods have since been extended to second-order accuracy [6], variable density flows [8; 22], inhomogeneous

constraints [12; 21], approximate forms of the projection operator [5; 18], and a variety of geometric config-

urations including embedded boundary representations [2; 3] and adaptive mesh refinement [1; 19; 20; 26].

In all of these instantiations, however, the core of the methodology is the same. An advection-

diffusion step is used to advance the velocity in time; the solution is then projected (or approximately

projected) onto the constraint space. The projection operator requires solution of a Poisson equation. In

the case of an exact projection, the discrete form of the Laplacian operator is dictated by the choice of

discrete divergence and gradient operators. In the case of an approximate projection, there is some latitude

in choosing the approximation to the Laplacian operator; it is not uniquely defined by the divergence and

gradient operators. Analytically, an exact projection is preferable; however, there are numerical difficulties

associated with solution of the Poisson equation dictated by an exact projection that have led to the extensive

use of approximate projection methods instead. The motivation for an approximate rather than exact

projection is covered in detail in [5; 18; 19].

Typically, solution of the Poisson equation dominates the computation time of the flow problem,

making a robust and efficient solver an essential component of any successful projection method. This report

explores the use of a Fast Multipole Method-based Poisson Solver (FMM-PS) in a second-order accurate ap-

proximate projection method for inviscid, constant density, incompressible flow. Both the projection method

and the FMM-PS solver are coded in FORTRAN 90, using the object-oriented software design developed

at the Center for Computational Science and Engineering at Lawrence Berkeley National Laboratory. This

software framework provides easy intercompatibility with other software elements as well as easy extension

from serial to massively parallel architectures.

The following sections of this report contain summaries of the projection methodology and the

FMM-PS solver, a discussion of how they have been coupled in this application, and computational examples

demonstrating the second-order accuracy and robustness of the new approximate projection formulation.

2 Projection Method

We consider here a projection method for solving the Euler equations for constant density, inviscid, incom-

pressible fluid flow in a two-dimensional doubly periodic domain with no external forcing.

3

The incompressible Euler equations are given by

ut = −(u · ∇)u−∇p (1)

∇ · u = 0 (2)

where u is the velocity and p is the pressure. For the algorithm described here the velocity is defined at cell

centers and integral time levels; the pressure is also defined at cell centers but at intermediate times.

The projection method is a fractional step method. First, (1) is discretized in time to construct a

new-time provisional velocity field, u∗, without enforcing (2). Second, a projection is applied to the new-

time velocity field so that the resultant field satisfies (2). The name projection method is used because the

intermediate solution, u∗, is projected onto the space of divergence-free fields.

In the original projection method developed by Chorin [11] the projection step of the algorithm

is specified by defining discrete operators D and G, approximating divergence and gradient, respectively,

which are skew-adjoint; i.e., D = −GT . With this definition the projection operator, P = I−G(DG)−1D

(with boundary conditions implicitly defined by the the flow problem), is a discrete orthogonal projection

on the finite-dimensional space of vector fields defined on the mesh. In Chorin’s formulation both pressure

and velocity are specified at nodes and central differences are used for the definition of D and G. This

results in an expanded five-point stencil for the discrete Laplacian, L = DG, that must be inverted to apply

the projection. This expanded stencil produces a local decoupling of the mesh points with a 2d-dimensional

kernel for G where d is the dimension of the problem. Bell, Colella, and Glaz [6] use a discretization of

the projection that defines the velocity on cell centers and pressure at nodes. This approach produces a

more compact stencil but also generates a local decoupling of the grid. Bell, Colella and Howell [7] use a

fully cell-centered analog of Chorin’s algorithm. This scheme exhibits a local decoupling but in the presence

of Dirichlet boundary conditions the cell-centered approximation eliminates the nonconstant elements in

ker G. As a result of the local grid decoupling nonstandard discretizations of DG must be used that require

specialized iterative procedures that properly respect the stencil that is used. For the schemes in which

dim ker G > 1 the nonconstant elements in the kernel induce additional, artificial compatibility constraints.

Almgren et al. [5] first introduced the notion of an approximate projection to circumvent the

numerical difficulties with exact discrete projections. Approximate projections are defined by replacing the

projection operator P by an approximation P̃ = I − G(L)−1D, where L is an approximation to but not

identically DG. The operator used in [5] used pressure defined on nodes. Lai [18] introduced a cell-centered

approximate projection where pressure is defined at cell centers and which uses a standard five-point centered-

difference stencil for the Laplacian. The D and G used in this report are those from [18]; a new L that also

4

operates on cell-centered values will be defined by the FMM-PS solver.

In order to advance the solution in time from tn to tn+1, we first construct the time-centered

advective update term,
[
(uADV · ∇)u

]n+1/2 using an unsplit second-order upwind predictor-corrector scheme,

where uADV is an intermediate-time edge-based advection velocity. We define

u∗ = un −∆t
[
(uADV · ∇)u

]n+1/2 −∆t Gpn−1/2 . (3)

where Gpn−1/2 is a lagged approximation to the pressure gradient,∇p. The construction of
[
(uADV · ∇)u

]n+1/2

that we use in the numerical examples in this paper is exactly that given in Appendix A of [4]; specifically,

we use conservative differencing rather than the convective differencing used in [5], for example.

In the second part of the fractional step scheme, we project a vector field V onto the space of

divergence-free fields. For an exact projection, V can take many forms, all of which lead to exactly the same

solution (assuming an exact solution of the resulting Poisson equation). Two natural candidates for V are

the velocity itself or the update to velocity. One could also modify each of these by removing the pressure

gradient component of the update. Specifically, one might choose any of the following (labeled as in [4]):

(1) V = u∗,n+1

(2) V = u∗,n+1 + ∆t Gpn−1/2

(3) V = u∗,n+1 − un

(4) V = u∗,n+1 − un + ∆t Gpn−1/2,

Then, after solving DGφ = DV and setting Vd = V−Gφ, the new velocity and pressure would be defined,

respectively, by

(1) un+1 = Vd, pn+1/2 = pn−1/2 +
1

∆t
φ

(2) un+1 = Vd, pn+1/2 =
1

∆t
φ

(3) un+1 = un + Vd, pn+1/2 = pn−1/2 +
1

∆t
φ

(4) un+1 = un + Vd, pn+1/2 =
1

∆t
φ

For approximate projections the choice of V has a nontrivial effect on the solution. Because the

approximate projection operators are second-order accurate approximations to an exact projection, the

methods that result from each choice of V are all second-order accurate for smooth problems, but not

identical. The implications of these choices are discussed and analyzed in [4] for the nodal approximate

5

projection operator [5] and the cell-centered operator [18]. For the purposes of this paper we consider

versions (1) and (2) as above.

The discretization of the divergence and gradient operators we will consider are described in [18; 19],

and are straightforward:

(Du∗)i,j =
1

2∆x
(ui+1,j − ui−1,j) +

1
2∆y

(vi,j+1 − vi,j−1) (4)

and

(Gφ)i,j = (
1

2∆x
(φi+1,j − φi−1,j),

1
2∆y

(φi,j+1 − φi,j−1)) (5)

In the case of [18; 19], LCC is the standard five-point approximation to the Laplacian operator,

(LCCφ)i,j =
1

∆x2
(φi+1,j + φi−1,j − 2φi,j) +

1
∆y2

(φi,j+1 + φi,j−1 − 2φi,j) (6)

We note that, discretely, LCC 6= DG, hence the approximateness of the projection. In the case of the

FMM-PS solver as described below, the projection is also approximate; LFMM 6= DG, where LFMM is the

operator discretely used by the FMM-PS solver.

3 Fast Multipole Method-based Poisson Solver (FMM-PS)

3.1 Background

The Fast Multipole Method, originally presented as a scheme for solving boundary value problems for the

Laplace equation ([24]) or for solving N -body problems ([14; 16; 10]), has also been presented as a fast,

direct solver for free space and boundary value Poisson problems. The algorithm described in this report

closely follows that described in [13]. The problem under consideration in [13] is the two-dimensional Poisson

problem,

∇2φ = f, (7)

in free space or on a square domain, with periodic, Dirichlet, or Neumann boundary conditions; an adaptively

refined mesh is also used. The solution proceeds from evaluation of the fundamental solution to the free

space Poisson problem, namely

φ(x) =
1
2π

∫
R2

log ‖x− y‖ · f(y) dy (8)

where x ∈ R2 and ‖ · ‖ denotes the distance. In the remainder of this section, we will consider x instead as

a point in the complex plane for convenience of notation.

6

Other work that has used the FMM to evaluate Equation (8) includes [25; 15]. A version of the FMM-

PS has been previously implemented in MATLAB and made available for public use (see www.madmaxoptics.com).

Here we develop solutions to the free space and periodic domain problems, and restrict our attention to a

uniform mesh. The version discussed here is implemented in FORTRAN 90, based on the BoxLib framework

developed in the Center for Computational Sciences and Engineering (CCSE) at LBNL.

3.2 Overview

We consider a hierarchical grid structure covering the domain. Level 0 of this structure is a single cell

covering the entire computational domain; partitioning the domain into four square cells results in level 1,

and so forth, for levels ` = 1, ..., L where 2L × 2L is the resolution at which we wish to solve the problem.

For each cell Ωi at level ` > 0 we define the parent as the cell at level ` − 1 that contains Ωi; we

define the child of Ωi at level ` < L as any one of the four cells at level `+ 1 that are contained by Ωi. By

near neighbor of Ωi we mean the eight cells on the same level as Ωi that share a boundary point with Ωi,

and by intermediate neighbor of Ωi we mean the 27 cells on the same level as Ωi which are not Ωi or its near

neighbors, but which are children of Ωi’s parent or its near neighbors.

T

nnn
n
n n n

n

i i
i
i
i
iiiii

i
i
i
i i i

i
i
i
i
i
i i i i i i

p

n n n

n

nn

n n

Figure 1: The left figure shows the grid at level 4. The cell T ’s near neighbors are marked with an n, and
its intermediate neighbors are marked with an i. In the figure on the right, showing the grid at level 3, T ’s
parent is marked with a p, and the near neighbors of p are marked with an n.

It is clear that near neighbors and intermediate neighbors of some cells lie beyond the boundary of the

computational domain. We make use of ghost cells, populated with values according to the boundary

conditions under consideration; see Section 3.4 below for more details.

Two types of series expansions are fundamental to the FMM. A (p + 1)-term multipole expansion

centered at point xc,

ψ(x) = Re

{
a0 log(x− xc) +

p∑
k=1

ak

(x− xc)k

}
, (9)

is singular at xc and accurate far from xc. We say that a multipole expansion is associated with a cell Ωi

7

when it is centered at the center of Ωi and describes the field due to the source function contained within

Ωi. It is not accurate in Ωi or its near neighbors (see [14] for details), but it can be evaluated accurately

beyond those cells.

A (p+ 1)-term local expansion centered at xc,

φ(x) = Re

{
p∑

k=0

bk · (x− xc)k

}
, (10)

is a truncated Taylor series with approximate coefficients. It is accurate near xc and not accurate far from

xc. A local expansion associated with a cell Ωi is centered at the center of Ωi and describes the field in

Ωi due to the source contained beyond Ωi. A preliminary local expansion associated with Ωi describes the

field in Ωi due to the source contained beyond Ωi, the parent of Ωi, and the parent’s near neighbors. The

augmented local expansion associated with Ωi describes the field in Ωi due to the source contained beyond

Ωi and its near neighbors.

3.3 Algorithm

The following outline is intended to serve as a roadmap for users of the routine, and to highlight the differences

between previous implementations and the present one. The algorithm can be described by the following

steps.

Step 1. Multipole expansion

• At the finest level, determine the multipole series associated with each cell, based on the source only

within that cell.

Note: In [13], each complex multipole coefficient ak in the expansion associated with a cell Ωi centered

at xc is found via numerical evaluation of an integral over Ωi:

a0 =
1
2π

∫
Ωi

f(y)dy

ak = − 1
2π

∫
Ωi

(y − xc)kf(y)
k

dy

(see Equation (13) in [13] for details). In the present implementation, since the projection method algorithm

as described here defines a single value within each cell for the right hand side of the Poisson equation, the

8

construction of the multipole coefficients can be simplified to

a0 = fi ·
1
2π
h2 (11)

ak = −fi ·
1
2π

∫
Ωi

(y − xc)k

k
dy, (12)

where h2 is the volume of a small cell. The value of the integral in Equation (12) can be pre-computed.

Step 2. Child-to-parent shift

• Shift the center of each multipole expansion from child cell to parent cell via Tcp, the child-to-parent

shift operator. Tcp is defined by {α} = Tcp{a}, where

αl =

(
l∑

k=1

ak(xc − xp)l−k

(
l − 1
k − 1

))
− a0(xc − xp)l

l
, l = 0 . . . p. (13)

Here, xc and xp are the centers of the child and parent cells, respectively; four child contributions are

summed for each parent cell.

• Repeat for each successively coarser level, up to level zero.

Notes: Our implementation follows [14].

This concludes the upward pass.

When considering the downward pass, the reader might imagine that we seek a solution to the

Poisson problem at only one target point in the domain. Call the target point T , and denote by BTλ the

cell that contains it on level λ. In practice, every cell on finest level L contains a target at its center, and

the following operations are performed for all cells on each given level simultaneously.

Step 3. Coarse-level local expansions

• Suppose that we have a local expansion associated with BT0 (i.e., a local expansion associated with

the entire computational domain) and also a local expansion associated with BT1. We consider the

derivation of these coarse-level local expansions in detail in Section 3.4 below.

Step 4. Preliminary fine-level local expansions

• Shift the center of BT1 to the center of BT2 via the parent-to-child shift operator, Tpc, to form the

preliminary local expansion associated with BT2. Tpc is defined by {β} = Tpc{b}, where

9

βl =
n∑

k=l

bk

(
k

l

)
(xc − xp)k−1, l = 0 . . . p. (14)

Here, xc and xp are again the centers of the child and parent cells, respectively; this shift is performed

once for each of the four children of the parent cell.

Step 5. Augmented local expansions

• Identify the intermediate neighbors of BT2. (See Section 3.4 below for details on intermediate neighbors

that lie beyond the boundary of the computational domain.)

• Transform the multipole expansion associated with each intermediate neighbor of BT2 into a local

expansion centered at BT2’s center, via operator Tml. Tml is defined by {b} = Tml{a}, where

b0 = a0 log(xm − xc) +
p∑

k=1

(−1)kak

(xc − xm)k
, and (15)

bl =
−a0

l · (xc − xm)l
+

1
(xc − xm)l

p∑
k=1

ak

(xc − xm)k

(
l + k − 1
k − 1

)
(−1)k, l = 1 . . . p. (16)

Here, xm is the center of the multipole expansion and xc is the center of the local expansion.

Sum the coefficients of these local expansions, and the coefficients of the preliminary local expansion

associated with BT2, to obtain the augmented local expansion associated with BT2.

• Repeat Steps 4 and 5 for each successively finer level.

Notes: In [13] an accelerated Tml operator is used, as introduced in [17]. For the present implementation,

we use the original version of the Tml operator, as described in [14].

Step 6. Evaluation of φ(T)

• Evaluate the augmented local expansion associated with BTL at T .

• Add in the contributions of BTL’s near neighbors, and of BTL itself. (See Section 3.4 below for details

on near neighbors that lie beyond the boundary of the computational domain.)

Notes: 1) For use in the projection method, the only points at which we need to evaluate φ at the finest

level are the cell centers; this reduces to φ = b0 in each cell. On the finest level, then, only the b0 coefficient

must be calculated.

10

2) Each near neighbor contribution depends on the value of f in the near neighbor cells, and is

calculated, using pre-computed values of definite integrals, via Lemma 3.2 of [13]. We refer the reader to

that paper for a discussion of the procedure.

3.4 Boundary Conditions

For the free space problem, we assume that the support of the source function f (i.e., the right-hand side

of Equation (7)) is contained within the computational domain. Therefore, for all ghost cells (required in

Step 5 and Step 6 of the algorithm above), the value of f and the value of each multipole coefficient is zero.

Furthermore, the multipole coefficients associated with coarse cells BT0 and BT1, as discussed in Step 3

above, are zero.

For the periodic boundary problem to be solvable, the integral of the source function f over the

computational domain must be zero. The strategy for implementing the periodic boundary condition is

the method of images, as described in [13]. To determine the values of f and the values of the multipole

coefficients associated with ghost cells, we imagine the plane tiled with copies of the original domain.

The multipole coefficients associated with coarse cell BT0 (discussed in Step 3 above) are found by

evaluating an infinite lattice sum first described in [23]. The details are also discussed in [14]; we use the

values of the lattice sums as given in [9]. The multipole coefficients associated with BT1 are then found by

implementing Steps 4 and 5 above.

The implementation of periodic boundary conditions is the foundation for implementation of Dirich-

let and Neumann boundary conditions. The reader who wishes to extend the current implementation to

address those cases is referred to [13].

3.5 Numerical Validation

Here we document the accuracy and O(N) scaling in time of the method for a smooth problem on the unit

square with doubly periodic boundary conditions. The analytical expression for f(x, y) is given by

f(x, y) = sin(2πx) sin(2πy), (17)

and the exact solution to ∇2φ = f is given by

φex(x, y) =
1
8π

sin(2πx) sin(2πy). (18)

11

For the purposes of this test, we view the source function as piecewise constant over cells with the

value of f at the cell center. Because of this approximation, which is analogous to using a single value for

DV in each cell in the next section, we expect that the convergence rate of the FMM-PS will be second

order rather than the higher order rate one would expect with a higher-order representation of f.

Table 17 shows the L1, L2 and L∞ norms of the differences between the calculated and exact solutions

at different resolutions; the calculated solution is compared against the value of φex at the cell centers. Here

we use thirteen terms (p = 0, ..., 12) in the multipole expansion. The ratios of the norms at differing

resolutions confirm second-order accuracy of the method. The final three columns show the roughly O(N)

time-scaling behavior of the method.

Table 1: The discrete norm of the difference between the FMM solution (p = 12) and the exact solution.

grid L1 ratio L2 ratio LInf ratio sec. sec./N ratio
64× 64 4.12e-06 - 5.07e-06 - 1.01e-05 - 7.83e-01 1.91e-04 -
128× 128 1.03e-06 4.00 1.27e-06 4.00 2.54e-06 3.99 3.53 2.16e-04 1.13
256× 256 2.56e-07 4.02 3.17e-07 4.01 6.34e-07 4.00 1.53e+01 2.33e-04 1.08
512× 512 6.30e-08 4.07 7.81e-08 4.05 1.57e-07 4.03 7.05e+01 2.69e-04 1.15

4 Using the FMM-PS in an Approximate Projection

The incorporation of the FMM-PS solver into the existing approximation projection method is straightfor-

ward. The source, f, for the solver is constructed using D and V as described in Section 2; this source is

passed to the FMM-PS as an array of point values which can be interpreted as cell averages of f as discussed

in Section 3. The FMM-PS returns a single value of φ for each cell; the G operator is then used as in Section

2 to construct Vd = V −Gφ. Again we use thirteen terms (p = 0, ..., 12) in the multipole expansion.

Here we revisit the some of the test problems and discussion about approximate projections from [4].

First, we confirm the second-order accuracy of the methodology with the simple time-dependent diagonally

translating vortices problem as used in [4]. The initial data, u = (u, v) is given by

u(x, y) = 1− 2 cos(x) sin(y)

v(x, y) = 1 + 2 sin(x) cos(y)

12

on the square domain, 2π × 2π. The exact solution to the Euler equations with this initial data is

uex(x, y, t) = 1− 2 cos(x− t) sin(y − t),

vex(x, y, t) = 1 + 2 sin(x− t) cos(y − t).

In the table below we present the error in u at t = 8 (the same final time as shown in Figure 1 of [4]) for

versions (1) and (2) of V. We include results for LFMM and for LCC , solved using multigrid. All calculations

were run with CFL = 0.9. We note two things from these results: first, that the approximate projection

Resolution LCC (1) ratio LCC (2) ratio LFMM (1) ratio LFMM (2) ratio
32× 32 8.85e-2 - 9.07e-2 - 8.95e-2 - 9.73e-2 -
64× 64 2.05e-2 4.32 2.08e-2 4.36 2.06e-2 4.34 2.15e-2 4.53
128× 128 4.61e-3 4.45 4.65e-3 4.47 4.62e-3 4.46 4.69e-3 4.58

Table 2: The L2 norm of the difference between u and uex at t = 8 for the translating vortices problem, and
the ratio of errors at differing resolutions.

method, with either LCC or LFMM , is second-order accurate for this smooth problem, and second, that

version (1) is slightly more accurate than version (2). This is consistent with the results in [4], where it was

found that the divergence of the velocity field is a useful metric for diagnosing approximation projections,

and that version (1) typically has better divergence properties than version (2). This implies that one might

like to use version (1) if possible. However, as we will see in the next example, version (2) tended to be

more robust for the two (cell-centered and nodal) discretizations of the approximate projection that were

considered. As illustrated above and discussed in [4], the difficulty with using approximate projections is

not a question of formal accuracy on smooth problems. Instead, problems tend to appear as a buildup of

“noise” during longer time integrations of more complex problems. To illustrate this behavior we revisit the

test problem with a random initial distribution of vorticity from [4]. A key feature of this problem is that

it contains substantially more high frequency content than the previous test case. The initial data for this

problem are given by specifying a random stream function with spectral characteristics defined by

ψ̂(k) =
ω

|k|(1 + (|k|/6)4)

where ω is a normally distributed random variable mapped into the complex domain with the appropriate

symmetries so that the inverse Fourier transform of ψ̂ is a real function, ψ. We then define u at t = 0 as the

discrete curl of ψ.

We examine the evolution of the solution from time t = 0 to 10, over which time the initial ran-

13

dom vorticity essentially coalesces into two smooth patches of counter-rotating vorticity. The problem is

sufficiently unstable that we do not expect the locations of the resultant smooth patches to match for all

methods; however, one does expect the vorticity to coalesce. The domain is the unit square with doubly

periodic boundary conditions, and all calculations are run with CFL = 0.9. In Figure 1 we show raster plots

of the vorticity at t = 0, followed by the vorticity at time t = 10 using versions (1) and (2) with LCC and

LFMM .

We see here that the use of LFMM appears to be more robust than the use of LCC for version (1).

This opens the possibility that version (1) might be more widely usable with LFMM than with LCC , resulting

in a more accurate yet robust method for the types of problems which tend to challenge the approximate

projection methodology.

5 Concluding Remarks

We have presented a new formulation of the approximate projection in an approximate projection method.

The discretizations of divergence and gradient are identical to those in existing approximate projection

methodology using cell-centered values of pressure; however, inversion of the five-point cell-centered dis-

cretization of the Laplacian operator is replaced by a Fast Multipole Method-based Poisson Solver (FMM-

PS).

The FMM-PS solver has been shown to be an accurate and robust component of an approxima-

tion projection method for constant density, inviscid, incompressible flow problems. Timings indicate that,

like other modern solvers, the solver scales linearly with the number of mesh points. Computational ex-

amples demonstrate second-order accuracy for smooth problems. The FMM-PS solver was found to be

more robust than inversion of the standard five-point cell-centered discretization of the Laplacian for certain

time-dependent problems which challenge the robustness of the approximate projection methodology.

6 Acknowledgements

This work was supported by the Applied Mathematics Program of the DOE Office of Mathematics, Infor-

mation, and Computational Sciences under the U.S. Department of Energy under contract No. DE-AC02-

05CH11231.

14

(a) t = 0

(b) LCC , version (1) (c) LCC , version (2)

(d) LFMM , version (1) (e) LFMM , version (2)

Figure 2: Vorticity at (a) t = 0, and (b)-(e) t = 10, for the random initial vorticity calculation at resolution
642.

15

References

[1] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, A conservative adaptive projec-

tion method for the variable density incompressible Navier-Stokes equations, Journal of Computational

Physics 142 (1998), 1–46.

[2] A. S. Almgren, J. B. Bell, P. Colella, and T. Marthaler, A cell-centered cartesian grid projection method

for the incompressible euler equations in complex geometries, Proceedings of the 12th AIAA Computa-

tional Fluid Dynamics Conference, June 19-22 1995, San Diego, CA.

[3] , A cartesian grid projection method for the incompressible euler equations in complex geometries,

SIAM J. Sci. Comput. 18 (1997), no. 5, 1289–.

[4] A. S. Almgren, J. B. Bell, and W. Y. Crutchfield, Approximate projection methods: Part I. Inviscid

analysis, SIAM J. Sci. Comput. 22 (2000), no. 4, 1139–59.

[5] A. S. Almgren, J. B. Bell, and W. G. Szymczak, A numerical method for the incompressible Navier-

Stokes equations based on an approximate projection, SIAM J. Sci. Comput. 17 (1996), no. 2, 358–369.

[6] J. B. Bell, P. Colella, and H. M. Glaz, A second order projection method for the incompressible Navier-

Stokes equations, Journal of Computational Physics 85 (1989), no. 2, 257–283.

[7] J. B. Bell, P. Colella, and L. H. Howell, An efficient second-order projection method for viscous incom-

pressible flow, Proceedings of the Tenth AIAA Computational Fluid Dynamics Conference, AIAA, June

1991, pp. 360–367.

[8] J. B. Bell and D. L. Marcus, A second-order projection method for variable-density flows, Journal of

Computational Physics 101 (1992), no. 2, 334–348.

[9] C. L. Berman and L. Greengard, A renormalization method for the evaluation of lattice sums, J. Math.

Phys. 35 (1994), 6036–6048.

[10] J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm for particle simulations,

SIAM J. Sci. Stat. Comput. 9 (1988), no. 4, 669–686.

[11] A.J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys. 2

(1967), no. 1, 12–26.

[12] M. S. Day and J. B. Bell, Numerical simulation of laminar reacting flows with complex chemistry,

Combust. Theory Modelling 4 (2000), no. 4, 535–556.

16

[13] Frank Ethridge and Leslie Greengard, A new Fast-Multipole accelerated Poisson solver in two dimen-

sions, SIAM J. Sci. Comput. 23 (2001), no. 3, 741–760.

[14] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987),

325.

[15] Leslie Greengard and June-Yub Lee, A direct adaptive Poisson solver of arbitrary order accuracy, J.

Comput. Phys. 125 (1996), 415–424.

[16] Leslie F. Greengard, The rapid evaluation of potential fields in particle systems, ACM Distinguished

Dissertation, MIT Press, 1987, Cambridge, MA.

[17] T. Hrycak and V. Rokhlin, An improved fast multipole algorithm for potential fields, SIAM J. Sci.

Comput. 19 (1998), 1804–1826.

[18] M. F. Lai, A projection method for reacting flow in the zero Mach number limit, Ph.D. thesis, University

of California, Berkeley, September 1993.

[19] D Martin and P Colella, A cell-centered adaptive projection method for the incompressible Euler equa-

tions, J. Comput. Phys (2000), 271–312.

[20] M.L. Minion, A projection method for locally refined grids, J. Comput. Phys. 127 (1996), 158–178.

[21] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland, and J. P. Jessee,

An adaptive projection method for unsteady low-Mach number combustion, Comb. Sci. Tech. 140 (1998),

123–168.

[22] Elbridge G. Puckett, Ann S. Almgren, John B. Bell, Daniel L. Marcus, and William G. Rider, A higher-

order projection method for tracking fluid interfaces in variable density incompressible flows, Journal of

Computational Physics 130 (1997), 269–282.

[23] Lord Rayleigh, On the influence of obstacles arranged in a rectangular order upon the properties of the

medium, Philos. Mag. 34 (1892), 481–502.

[24] V. Rokhlin, Rapid solution of integral equations of classical potential theory, Journal of Computational

Physics 60 (1985), no. 2, 187–207.

[25] G. Russo and J.A. Strain, Fast triangulated vortex methods for the 2-D Euler equations, J. Comput.

Phys. 111 (1994), 291–323.

[26] M. M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. Howell, and M. Welcome, An adaptive level

set approach for incompressible two-phase flows, Journal of Computational Physics 148 (1999), 81–124.

17

