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A HIGHER-ORDER UPWIND METHOD FOR
VISCOELASTIC FLOW

ANDREW NONAKA, DAVID TREBOTICH, GREGORY MILLER,
DANIEL GRAVES AND PHILLIP COLELLA

We present a conservative finite difference method designed to capture elastic
wave propagation in viscoelastic fluids in two dimensions. We model the incom-
pressible Navier–Stokes equations with an extra viscoelastic stress described by
the Oldroyd-B constitutive equations. The equations are cast into a hybrid conser-
vation form which is amenable to the use of a second-order Godunov method for
the hyperbolic part of the equations, including a new exact Riemann solver. A
numerical stress splitting technique provides a well-posed discretization for the
entire range of Newtonian and elastic fluids. Incompressibility is enforced through
a projection method and a partitioning of variables that suppresses compressive
waves. Irregular geometry is treated with an embedded boundary/volume-of-fluid
approach. The method is stable for time steps governed by the advective Courant–
Friedrichs–Lewy (CFL) condition. We present second-order convergence results
in L1 for a range of Oldroyd-B fluids.

1. Introduction

The governing equations for viscoelastic flow of an Oldroyd-B fluid are the incom-
pressible Navier–Stokes equations plus an extra viscoelastic stress described by the
Oldroyd-B constitutive equations:

∂u
∂t
+ (u · ∇)u−

1
ρ
∇ · τ =−

1
ρ
∇ p+

µs

ρ
1u, (1)

∇ · u = 0, (2)

∂τ

∂t
+ (u · ∇)τ − (∇u)τ − τ (∇u)T =

µp

λ
2D−

1
λ
τ , (3)

where u is the fluid velocity, τ is the polymeric stress tensor, p is the isotropic
pressure, and D= [∇u+ (∇u)T ]/2 is the rate-of-strain tensor. The parameters that
describe the fluid are the density, ρ, relaxation time, λ, and the solvent and polymeric
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contributions to the total viscosity, µ=µs+µp. The dimensionless parameters that
characterize these types of flows are the Reynolds number, Re= ρU L/µ, and the
Weissenberg number, We= λU/L , where U and L are the characteristic velocity
and length.

Though the Reynolds number and the Weissenberg number independently char-
acterize viscoelastic flows, it is the elastic Mach number, Ma=

√
Re ·We, that is

the critical parameter in determining well-posedness of the system. In particular,
the system of equations exhibits a change in type from parabolic to hyperbolic when
the elastic Mach number becomes supercritical (Ma> 1), admitting propagation
of discontinuities. This mathematical behavior was alluded to in the experimental
results of Ultman and Denn [33] and formally noted in [7; 18]. Joseph suggested
that a method suitable for transonic flows may be needed to capture the transition to
supercritical flows in viscoelasticity [17]. The analysis described in [30] capitalized
on this concept in the design of a numerical algorithm that resolves unsteady elastic
wave behavior in viscoelastic fluids.

In this paper, we extend the previous numerical algorithm [30] by leveraging the
conservative hyperbolic formulation described therein to design a suitable higher
resolution upstream method for the hyperbolics. In the original algorithm the
Oldroyd-B equation is recast into a well-posed hyperbolic form with source terms
using a stress-splitting technique; a Lax–Wendroff method is used to discretize
the quasilinear form of the hyperbolic part in the context of a predictor-corrector
projection method. (Projection methods are an approach to enforcing the constraint
in incompressible flows [3; 2] and have proven to be successful in treating unsteady
viscoelastic flows [19; 30].) Our new method uses a second-order Godunov method
[5; 6], instead of Lax–Wendroff as in [30], to discretize the hyperbolic part of the
equations, resulting in two immediate advantages. First, the maximum time step is
increased by a factor of four to allow an advective CFL number restriction of 0<
CFL< 1. Second, we can apply second-order conservative finite volume techniques
which have been developed for hyperbolic conservation laws [6], elliptic equations
[16], and parabolic equations [22] in an embedded boundary (EB) framework for
irregular geometry. Our results are consistent with the modified equation analysis
in these methods, and we obtain second-order solution error convergence in L1 for
a range of Oldroyd-B fluids.

2. Hyperbolic analysis

Through the introduction of the inverse deformation tensor, g, which links material
(Lagrangian) coordinates, X , and spatial (Eulerian) coordinates, x, as in

gαβ =
∂Xα
∂xβ

, (4)
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the advective part of the PDE for viscoelastic stress (3) may be put in conservation
form. The quantity M is conserved:

M ≡ g
(
τ + ρa2 I

)
gT , (5)

∂M
∂t
+∇ · (u⊗M)= g

[
−

1
λ
τ +

(
µp

λ
− ρa2

)
2D
]

gT , (6)

∂ ged

∂t
+

∂

∂xd
gu =

[
u× (∇ × gT )

]T ed . (7)

The PDE for g and its right hand side are described in detail in [23]. Here a is an
arbitrary constant with dimensions of velocity. As developed in [30], this fictitious
wave speed may be treated as a parameter that affects the partitioning of hyperbolic
and elliptic terms. Through proper choice of that parameter, the CFL limiting time
step of the hyperbolic partition can be improved by several orders of magnitude in
the Newtonian limit (λ→ 0). Here, for purposes of analysis, a need only satisfy
mind(ρa2

+ τdd) > 0.
All together, the coupled PDEs (1)-(3) may be written in the form

∂U
∂t
+
∂Fα
∂xα
= Sh(U)+ Si (U,∇U,1U), (8)

where the left hand side is a system of conservation laws, and the right hand side
contains proper hyperbolic source terms, Sh , and improper (elliptic) source terms,
Si . U is the vector of conserved quantities:

U =
(
u, M, ge0, . . . , geD−1

)T
, (9)

Fd =

(
ud u− 1

ρ
τ ed , ud M, guδ0d , . . . , guδD−1,d

)T
, (10)

Sh =

(
−

1
ρ
∇ p, −1

λ
gτ gT , 0, . . . , 0

)T
, (11)

Si =

(
νs1u, 2

(µp

λ
−ρa2

)
g DgT ,[

u× (∇×gT )
]T e0, . . . ,

[
u× (∇×gT )

]T eD−1

)T

, (12)

where D = 2 is the dimensionality of the problem and ν = µ/ρ.
We analyze the hyperbolic subsystem in primitive variables, W . The linearization

of (8) in primitive variables gives matrices whose eigenvalues are wave speeds, and
whose eigenvectors determine the characteristics. If, in the 1D analysis of these
linearized equations for direction d, primitive variable ud is included, then wave
speeds and characteristics describing compressive wave motion are observed. Yet,
omission of ud and its corresponding stress τdd is also inaccurate [9] since variation
in these quantities is permitted by the multidimensional equations. The approach
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to this dilemma, after [9; 8] is to block partition the primitive equations, treating
dependence on gradients of the variables ud and τdd as source terms from the point
of view of the remaining variables. We will refer to the variable partition (ud , τdd)

as inactive (subscript I ), and the remaining variable partition as active (subscript
A). For d = 0,

W T
0 =

(
W T

A,0

∣∣ W T
I,0
)
= (u1, τ10, τ11, g00, g10, g01, g11 | u0, τ00). (13)

The primitive variable τ01 is omitted because τ is symmetric. In these variables,
the linearized homogeneous advection equation in direction d = 0 is

∂W0

∂t
+ A0

∂W0

∂x0
= 0, (14)

A0 =

[
AAA,0 AAI,0

AI A,0 AI I,0

]

=



u0 −1/ρ 0 0 0 0 0 0 0
−ρc2

0 u0 0 0 0 0 0 −τ10 0
−2τ10 0 u0 0 0 0 0 0 0

g01 0 0 u0 0 0 0 g00 0
g11 0 0 0 u0 0 0 g10 0
0 0 0 0 0 u0 0 0 0
0 0 0 0 0 0 u0 0 0
0 0 0 0 0 0 0 u0 −1/ρ
0 0 0 0 0 0 0 −2ρc2

0 u0


, (15)

with cd =
√

a2+ τdd/ρ. The diagonal matrix of eigenvalues of partition AAA,0 is

30 = diag (u0− c0, u0, u0, u0, u0, u0, u0+ c0)
T . (16)

The corresponding right eigenvectors are given by the columns of

R0 =



−c0 0 0 0 0 0 c0

−ρc2
0 0 0 0 0 0 −ρc2

0
−2τ10 1 0 0 0 0 −2τ10

g01 0 1 0 0 0 g01

g11 0 0 1 0 0 g11

0 0 0 0 1 0 0
0 0 0 0 0 1 0


. (17)

2.0.1. An exact Riemann solver. For the incompressible Euler equations, Bell et
al. [2] construct edge-centered time-centered predictor states using Taylor series
with upwind derivatives. For those equations, their approach is identical to using a
higher-order Godunov predictor because upwinding solves exactly the associated
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Riemann problem. In the present system of equations, the wave structure is more
complex, but there are no genuinely nonlinear waves, that is,(

∇WA3kk
)
· Rek = 0, (18)

for each of the 7 waves k associated with block AAA of (15). This condition is
guaranteed by the fact that the complete solution for the inactive variables is taken
to be the average of the input left and right states [8], and therefore the eigenvalues
are constant with respect to each component of WA.

By analysis of the generalized Riemann invariants,

∂(WA)0

eT
0 Rek

=
∂(WA)1

eT
1 Rek

= · · ·
∂(WA)6

eT
6 Rek

, (19)

for each wave k, it may be concluded (assuming for convenience d = 0) that

(i) u1 and τ10 are constant across the 5 contact (speed u0) waves;

(ii) g01 and g11 are constant across the fast u0± c0 waves;

(iii) the generalized Riemann invariants for the ± fast waves include the identities

∂u1

±c0
=
∂τ10

−ρc2
0
=
∂g00

g01
=
∂g10

g11
, (20)

where the denominators of each term are constant across the wave. Thus,
across each fast wave the change in u1 is proportional to c0, etc.;

(iv) across the fast waves, the generalized Riemann invariants contain also

∂τ11

−2τ10
. (21)

So, given the change of τ10 across the given wave, the change in τ11 is deter-
mined.

Let the constant states in the Riemann fan be labeled WL , WL∗ , WR∗ , and WR in
sequence, and let 9L (9R) measure the strength of the left (right) fast waves. From
observation (iii) one has(

u1

τ10

)
L∗
=

(
u1

τ10

)
L
−9L

(
c0

ρc2
0

)
,(

u1

τ10

)
R∗
=

(
u1

τ10

)
R
+9R

(
c0

−ρc2
0

)
,

(22)

and from observation (i) one has (u1, τ10)L∗ = (u1, τ10)R∗ , which couples the fast
waves enabling their strength to be simply determined from(

c0 c0

ρc2
0 −ρc2

0

)(
9L

9R

)
=

(
u1

τ10

)
L
−

(
u1

τ10

)
R
. (23)
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With τ10 determined across the wave fan, observation (iv) determines τ11:∫ (τ11)L∗

(τ11)L

dτ11 =
2
ρc2

0

∫ (τ10)L∗

(τ10)L

τ10dτ10, (24)

(τ11)L∗ = (τ11)L +
1
ρc2

0

[
(τ10)

2
L∗ − (τ10)

2
L
]
. (25)

The same equation holds across the right fast wave. The determination of other
variables is then trivial by application of observation (iii). For example, from (20),

(g00)R∗ − (g00)R

(g01)R∗
=
(u1)R∗ − (u1)R

c0
. (26)

The active variable solution to our Riemann problem is given by the constant
state (L , L∗, R∗, or R) containing the zero wave speed characteristic.

3. Predictor-corrector formulation

We discretize time in steps 1t , with tn+1
= tn
+1tn . Space is discretized in square

cells of length h, and x = h i is the lower left corner of cell i . Variables Un
i are

cell-centered.
For each time step n, the artificial wave speed a is a global constant determined

by the heuristic model:

a2
=min

{
χ(λ)a2

∞
+ [1−χ(λ)] a2

0,
νp

λ

}
, (27)

a2
∞
=
νp

λ
, (28)

a2
0 =

2
ρ

min
i,d
|(τdd)i |, (29)

χ(λ)=
λ

tadv

[
1− e−λ/(2tadv)

](
1− e−tadv/λ

)
, (30)

tadv =
h

maxi |u|
, (31)

with limiting values a2
= a2
∞

as λ→∞, and a2
= a2

0 as λ→ 0. Note that the
conserved quantity M depends on a, so a reevaluation of a necessitates a rescaling
of M throughout the domain.

The predictor step of the method uses well-established higher-order Godunov
approaches [5; 6] to estimate time-centered edge-centered solution values. These
predictor states are made discrete divergence-free (∇·un+ 1

2 =0) on a marker-and-cell
(MAC) stencil [15].
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Fluxes Fn+ 1
2

i±e/2 = F
(
Un+ 1

2
i±e/2

)
computed from these predictor states enter a conser-

vative update:

Ũn+1
i = Un

i −
1t
h

D−1∑
d=0

[(
Fd
)n+ 1

2
i+ed/2

−
(
Fd
)n+ 1

2
i−ed/2

]
. (32)

The corrector computes Un+1 by adding to Ũn+1 implicit and explicit source term
contributions, and by use of an approximate cell-centered projection to make un+1

discrete divergence-free.

3.1. Predictor. The predictor in our predictor-corrector method consists of the
calculation of time-centered edge-centered states, Wn+1/2

i+ed/2, which are discrete
divergence-free. The predictor state is computed in four steps.

First, the one-dimensional primitive equations are used to estimate time-centered
edge-centered states. For the active partition, characteristic tracing and slope limiting
occur as in higher-order Godunov methods. For the inactive partition, Taylor series
in space and time with centered differences are used. This first step uses strictly
one-dimensional equations with no transverse coupling.

Second, the edge states so obtained are double-valued, and we resolve these with
the Riemann solver described above in Section 2.0.1.

Third, the transverse coupling omitted in the first step is incorporated using cell-
centered gradients of the edge-centered states computed by the Riemann solution.
The transverse flux correction is described in [5; 28], but we include the transverse
terms in terms of primitive variable differences rather than conservative fluxes. The
corrected states so-obtained are again double-valued, and another Riemann problem
gives a single final result.

Fourth, time-centered edge-centered velocity data is made discrete divergence-
free, i.e.,

u := u−∇
[
1−1(∇ · u)

]
. (33)

With u edge-centered, ∇·u is cell-centered. This projection is exact, in the sense that
1h= (∇·)h∇h , with the discrete Laplacian reducing to the standard 5-point stencil in
two dimensions away from boundaries. Then, 1−1(∇ ·u) is also cell-centered. The
discrete gradient operator uses centered divided differences to give edge-centered
corrections. The normal and tangential velocity components are updated at each
face even though only the normal velocity contributes to the divergence.

The details of the first step is now given. With the active–inactive partitioning
introduced in (13), upwind characteristic tracing for the active primitive variables
takes the form
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(
W̃A,d

)n+ 1
2

i+ed/2,L
=
(
WA,d

)n
i − RdP+

(
1t
2
3d −

h
2

I
)

R−1
d

(
∂WA,d

∂xd

)n

i

−
1t
2h

AAI,d

(
∂WI,d

∂xd

)n

i
,

(
W̃A,d

)n+ 1
2

i+ed/2,R
=
(
WA,d

)n
i+ed
− RdP−

(
1t
2
3d +

h
2

I
)

R−1
d

(
∂WA,d

∂xd

)n

i+ed

−
1t
2h

AAI,d

(
∂WI,d

∂xd

)n

i+ed

,

(34)

where P±(D)= diag(Di i if 3i i ≷ 0, 0 otherwise) is a projection that sets to zero
those terms of the diagonal argument matrix corresponding with eigenvalues whose
sign is negative/positive, respectively. The subscript L (R) indicates that the result is
traced to the left (right) side of the edge i + ed/2. Where the stencils support it, the
derivatives ∂WA/∂x use van Leer limited [34] fourth-order accurate derivatives [4].
The derivatives ∂WI /∂x use second-order centered divided differences. The tilde
denotes that source terms have not yet been accounted for. The inactive variables
are extrapolated in time using(
W̃I,d

)n+ 1
2

i+ed/2,L
=
(
W̃I,d

)n
i −

(
1t
2

AI I,d −
h
2

I
)(

∂WI,d

∂xd

)n

i

−
1t
2

AI A,d

(
∂WA,d

∂xd

)n

i
,

(
W̃I,d

)n+ 1
2

i+ed/2,R
=
(
W̃I,d

)n
i+1−

(
1t
2

AI I,d +
h
2

I
)(

∂WI,d

∂xd

)n

i+ed

−
1t
2

AI A,d

(
∂WA,d

∂xd

)n

i+ed

.

(35)

The velocity source is computed explicitly via

un+ 1
2

i+ed/2,L = ũn+ 1
2

i+ed/2,L +
1t
2

(
−

1
ρ
∇ p

n− 1
2

i + νs(1h un)i

)
, (36)

where 1h the discrete 5-point Laplacian in regular domains. The time-centered
pressure is taken from the previous time step. The calculation of ∇ pn+ 1

2 occurs as
the last step of the corrector, (43).

The source term for viscoelastic stress is computed implicitly to properly recover
the Newtonian limit (τ → 2µp D as λ→ 0):

τ
n+ 1

2
i+ed/2,L = τ̃

n+ 1
2

i+ed/2,L +
1t
2

[
−

1
λ
τ

n+ 1
2

i+ed/2,L +

(µp

λ
− ρa2

)
2Dn

i

]
. (37)

The rate of strain tensor, D, is calculated with centered differences.
The source terms for g are omitted for the following reason. The material
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reference frame X can be defined, at the start of each time step, to be equal to x,
i.e., g = I identically at the start of each time step. With this choice, the source
terms for g are zero if evaluated at tn . Resetting g to I necessitates renormalizing
M from time step to time step.

3.2. Corrector. The corrector generates time n+1 cell-centered states that are
discrete divergence-free. The basic idea is to generate cell-centered time tn+1

estimates, Ũn+1, using the flux differencing quadrature (32). To these estimates
source terms are added, as described below, to obtain Un+1.

The corrector step for the velocity field is more complicated. We would like to
use the following update equation (the superscript ∗ indicates that the velocity field
is not yet divergence-free):

un+1,∗
− un

1t
=

[
−∇ ·

(
u⊗ u−

1
ρ
τ

)n+ 1
2
]
+

(
−

1
ρ
∇ pn− 1

2 + νs1u
)
. (38)

However, as in [30], we would like for the velocity update equation to properly
capture the Newtonian and elastic limits. We modify the predictor step by not
including the source terms for τ in the edge state prediction to instead obtain τ̃ at
edges. However, extra care must be taken since the transverse correction term is
still computed with edge states that have been constructed with the τ sources.

Combining an equation of the form (37) with (38), we arrive at our new update
equation for velocity:

un+1,∗
− un

1t

=

[
νs+

1t (νp−λa2)

2λ+1t

]
1u+

[
−∇·

(
u⊗u−

2λ
2λ+1t

τ̃

ρ

)n+ 1
2

−
1
ρ
∇ pn− 1

2

]
. (39)

These equations are expressible as D scalar discrete Helmholtz equations. This
discretization is chosen in order to capture the Newtonian and elastic limits, that is,
in the Newtonian limit (λ→ 0) we recover

un+1,∗
− un

1t
= [νs + νp]1u+

[
−∇ · (u⊗ u)n+

1
2 −

1
ρ
∇ pn− 1

2

]
, (40)

and in the elastic limit (λ→∞), where a2 is given by (28), we recover

un+1,∗
− un

1t
= νs1u+

[
−∇ ·

(
u⊗ u−

τ̃

ρ

)n+ 1
2

−
1
ρ
∇ pn− 1

2

]
. (41)

The Helmholtz equations (39) are solved using the Runge–Kutta technique of
[32], which yields an l0 stable solution in regular and irregular domains. That
method specifies the time centering of the Laplacian term.
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The last step of the velocity corrector removes the divergence of u∗ and calculates
the pressure whose gradient will affect the subsequent time step using a pressure-
projection formulation [31]. First, a potential φ is calculated on cell centers with
the discrete Laplacian:

1φ =

[
∇ ·Avg

(
un+1,∗

+
1t
ρ
∇ pn− 1

2

)]
, (42)

where Avg is an operator that computes face-centered values by averaging neigh-
boring cell-centered values. Pressure is proportional to φ, and

∇ pn+ 1
2 =

ρ

1t
∇φ. (43)

With this gradient, the discrete-divergence-free velocity is

un+1
= un+1,∗

+
1t
ρ

(
∇ pn− 1

2 −∇ pn+ 1
2
)
. (44)

This projection is approximate, in the sense that 1h 6= (∇·)h∇h . As noted by Lai
[20], the approximate projection does not remove certain nonphysical oscillatory
modes. These are damped by application of a filter

u := u+ ζ∇(∇ · u), (45)

using a divergence stencil other than the centered divided difference used in (42).
We use ζ = h2/5 in two dimensions which is stable while always damping monopole
modes in the experience of [8; 30].

The corrector step for g and M simply follows the flux differencing quadrature
(32) followed by a source term update. The source term for g is computed as in
[23] using edge — and time — centered values from the predictor. The viscoelastic
stress source term is discretized using Crank–Nicholson:

Mn+1
= M̃n+1

+
1t
2

(
g
[(µp

λ
− ρa2

)
2D−

1
λ
τ
]

gT
)n

+
1t
2

(
g
[(µp

λ
− ρa2

)
2D−

1
λ
τ
]

gT
)n+1

,

rearranged in the form

Mn+1
=

2λ
2λ+1t

M̃n+1
−

1t
2λ+1t

Mn

+
1t

2λ+1t

(
g [(µp − ρa2λ) 2D+ ρa2 I] gT )n

+
1t

2λ+1t

(
g [(µp − ρa2λ) 2D+ ρa2 I] gT )n+1

, (46)

which is evaluated pointwise.
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4. Irregular domains

We use a Cartesian grid embedded boundary method to discretize the fluid equations
in the presence of irregular boundaries [6]. In this approach, the irregular domain
is discretized as a collection of control volumes formed by the intersection of the
problem domain with the square Cartesian grid cells as in a “cookie cutter”. The
various operators — the discrete divergence ∇·, discrete gradient ∇, and discrete
Laplacian 1— are approximated using finite volume differences on the irregular
control volumes. Cells are classified as regular if they do not intersect embedded
boundaries, irregular if they intersect boundaries, or covered if they have zero fluid
volume fraction. Faces are classified in an analogous way. In problems containing
irregular domains, the finite volume treatment of the regular cells follows the
description of Section 3.

Throughout, time tn data (U) will be centered at cell centers, even if that point
lies outside the fluid domain. Time tn+ 1

2 data (fluxes F) are centered at the centroid
of faces,

x̂i±ed/2 =
1

αi±ed/2hD−1

∫
Ai±ed /2

x d A, (47)

where αi±ed/2 is the area fraction of a cell edge i±ed/2 not covered by the embedded
boundary, or

αi±ed/2 =
Ai±ed/2

hD−1 , (48)

with Ai±ed the area of cell i on side ±d in contact with the fluid. Other geometric
quantities used are the volume fraction, defined as

κi =
Vi

hD , (49)

the area fraction of the domain boundary intersected with cell i , AEB
i , and its

associated area fraction, defined as

αEB
i =

AEB
i

hD−1 , (50)

and the outward-directed vector normal to the embedded boundary interface in cell
i , given by

ni =
1

αEB
i hD−1

∫
AEB

i

n d A. (51)
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In irregular cells, the quadrature (32) is not appropriate [6]. A stable but noncon-
servative update is

Ũn+1
i = Un

i −1t
[
κi (∇ · F)Ci + (1− κi )(∇ · F)NC

i
]n+ 1

2 , (52)

with conservative and nonconservative flux differences given by

(∇ · F)NC
i =

1
h

D−1∑
d=0

[
(Fd)i+ed/2− (Fd)i−ed/2

]
, (53)

(∇ · F)Ci =
1
Vi

∫
Vi

(∇ · F) dV

≈
1
κi h

[
D−1∑
d=0

∑
±

[
±αi±ed/2 Fd(x̂i±ed/2)

]
+αEB

i (ni · FEB
i )

]
, (54)

respectively.
Conservation violation is expressed locally by the generalized mass deficit δm,

δmi =1t (1− κi )κi
[
(∇ · F)NC

− (∇ · F)C
]

i , (55)

which is redistributed in a volume-weighted manner according to

Ũn+1
i := Ũn+1

i +

3D∑
j=neighbor(i)

δm j

w j
, (56)

wi =

3D∑
j=neighbor(i)

κ j . (57)

The calculation of fluxes on covered faces, and stencils used to re-center fluxes
to centroids, are described in [6; 22; 29]. Additional details are given in [24]. Here
we describe differences between the regular and irregular domain calculations that
are specific to the present algorithm.

We compute the Poisson equation in divergence form, 1φ ≈ ∇h
· (∇hφ) = f ,

with discrete divergence given by the conservative form (54). This means that
κ1hφ is directly accessible, and division by κ can be unstable. For the Laplacian
appearing in the velocity source term (36) we use κ1hφ in place of 1hφ, which
formally introduces an O(1t) discretization error. However, the results obtained by
this approximation are stable and appear to not affect the global error.

In irregular cells the discretization of the divergence term in (39) is computed as
follows. Define a velocity flux to be

Fu = u⊗ u−
2λ

2λ+1t
τ̃

ρ
. (58)



A HIGHER-ORDER UPWIND METHOD FOR VISCOELASTIC FLOW 69

Then, compute the divergence of Fu using (52) and redistribute according to (56).
Covered face values needed in the nonconservative divergence are obtained by

extrapolation from face-centered time-centered values, as described in [6]. Unlike
[6], we take this extrapolated edge state to represent the unique face value, so no
further Riemann problem is solved.

5. Boundary conditions

In the hyperbolic treatment, boundary conditions enter in two ways:

(1) on embedded boundaries, e.g., the computation of FE B in (54); and

(2) where the Cartesian cells abut the problem domain.

The conservative flux divergence (54) includes the flux derived from data centered
at the centroid of the embedded boundary. Such states are derived from cell-centered
data using Taylor series, without upwind projection. If x̂EB

i is the centroid relative
to the cell center,

Wn+ 1
2 ,EB

i =Wn
i + x̂EB

i ·
(
∇Wn)

i +
1t
2

(
∂Wi

∂t

)n

=Wn
i +

∑
d

[(
x̂EB

i
)

d I −
1t
2

Ad

](
∂Wn

∂xd

)
i
+
1t
2

Sn
i . (59)

This extrapolation is implemented without partitioning of W or A. The source
terms are implemented as with the predictor Section 3.1. The discrete gradient ∇W
uses central differences where possible, or one-sided differences where necessary.

This one-sided boundary value may be incompatible with physical boundary
conditions. The approach to boundary conditions uses the ideas of Ghidaglia and
Pascal [10]. Let WP be an extrapolated edge state, as calculated by (59), and let
WS be the final value used to construct the edge flux. In appropriately rotated
coordinates, we are interested in the eigenstructure of the matrix AAA(WS). For
each characteristic pointing into the domain, one degree of freedom at the boundary
must be specified. For each characteristic pointing out of the domain, a characteristic
condition must be met. Specifically, if characteristic k points out of the domain, a
sufficient characteristic condition is

lk · (WP −WS)= 0. (60)

For solid wall boundaries, including the embedded boundaries, this construction
is straightforward. We derive AAA on the boundary using active variables taken
from WP , and selecting inactive variables on physical grounds. In the present
application, the embedded boundaries are stationary surfaces subject to no-flow
conditions. Accordingly, the inactive variable un is uniquely determined, un = 0
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(here subscript n denotes the interface normal direction; subscript t will denote the
tangential direction). There is no a priori reason for τnn to be affected by boundary
conditions, thus we take τnn in state WS equal to its extrapolated value in WP .
With these choices, exactly one characteristic of AAA enters the domain, leaving
one degree of freedom to be specified. We use the no-slip boundary condition to
zero the tangential velocity component. For the characteristic that points out of the
domain, the the characteristic condition lun−c · (WP −WS)= 0 (if the wall normal
is positive) or lun+c · (WP −WS) = 0 (if the wall normal is negative) uniquely
determines the shear stress τnt component of WS . Thus, for solid wall boundaries,
WS =WP , except for variables u which are taken to be zero on physical grounds
and the shear stress which is determined by the characteristic condition.

For inflow and outflow boundaries this procedure is more involved. Let n point
out of the domain, so for inflow we have un < 0. Inflow conditions are either
supersonic, un + c < 0, or not, with un and c given by inactive variables taken
from the specified inflow condition. When supersonic, all characteristics flow into
the domain, and the state WS is given exclusively by imposed conditions. If not
supersonic, only the characteristic un + c flows out of the domain, so only one
constraint on WS comes from WP . In this case we determine the shear stress τnt

component of WS by solving lun+c · (WP −WS)= 0, with all other components of
WS being prescribed by the inflow condition.

On outflow, we take the inactive variables from WP , and un > 0. If supersonic,
un − c > 0, no characteristics flow into the fluid domain, and we take WS =WP .
If subsonic, one degree of freedom of WS is specified by external conditions. In
that case, we choose ut = 0 and determine the remaining values of WS from
lk · (WS −WP)= 0, for all k 6= un − c.

Boundary conditions are also required for the Helmholtz velocity correctors,
(39), and the divergence-cleaning projections (33) and (42) . The implicit velocity
equations (39) use homogeneous Dirichlet conditions on solid wall boundaries,
inhomogeneous Dirichlet conditions on inflow boundaries (using prescribed far-field
values), and homogeneous Neumann conditions on outflow. The discrete Lapla-
cian operator encountered in divergence-cleaning projections uses homogeneous
Dirichlet on outflow, and homogeneous Neumann on inflow and solid walls.

6. Results

Results are presented for three fluids: a Maxwell (highly elastic) fluid, characterized
by having no solvent viscosity, a nonzero polymeric viscosity, and a nonzero
relaxation time; a Newtonian fluid, characterized by having a nonzero solvent
viscosity, no polymeric viscosity, and relaxation time of zero; and a hybrid fluid
[30] — a Maxwell fluid with an added solvent viscosity. Two geometries are used
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Figure 1. Time-dependent un profiles of a Maxwell fluid with a
vortex initial condition in a rectangle. The domain has 256× 256
cells with 24 time step increments using 1t = 1.6× 10−3. The
range is from −0.5 (red) to 0.5 (blue).

that are nonconforming with Cartesian grids; a rotated rectangular geometry, and a
circular domain.

For the rectangular geometry, the computational domain has l = w = 2.0. The
rectangular box has dimensions l = 1.7, and w = 1.0, and has been rotated 45◦ to
maximize the amount of fluid in the computational domain. The coarse domain has
128×128 cells. We have chosen an initial vortex velocity profile that is sufficiently
smooth at the vortex edge, given by the function

uθ (r)= 2.56[(r/0.45)(1− r/0.45)]4 H(0.45− r),

where r is the distance to the center of the box and H is the Heaviside step function.
This gives a maximum initial speed of |u| = 1.0 at r = 0.225 (see Figure 1, top
left).

For all images corresponding to the angled box geometry, we have rotated
the output so the variables are seen with respect to the normal (lengthwise) and
transverse (widthwise) directions. The initial pressure is set to zero. We define
the characteristic speed, U , as the maximum initial velocity and the characteristic
length, L , as the width of the box.
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Figure 2. Profiles for a Maxwell fluid in a rectangle at t = 0.4224
(last image in Figure 1). Clockwise from top left: ut , −0.5 (red)
to 0.5 (blue); normal stress τnn , −0.21 (red) to 0.31 (blue); normal
stress τt t , −0.21 (red) to 0.28 (blue); shear stress τtn , −0.46 (red)
to 0.33 (blue); hydrostatic pressure p, 0 (red) to 0.656 (blue).

Figure 3. Time-dependent u0 profiles of a Maxwell fluid with a
vortex initial condition in a disk. The domain has 128× 128 cells
with 24 time step increments using 1t = 1.6× 10−3. The range is
from −0.50 (red) to 0.50 (blue).

For the circular geometry, the computational domain has l = w = 1.0 and the
circle has radius r = 0.45 to maximize the amount of fluid in the computational
domain. The coarse domain has 64 × 64 cells. The initial velocity profile is
uθ (r)= 2.56[(r/0.4)(1−r/0.4)]4 H(0.4−r), which gives a maximum initial speed
of |u| = 1.0 at r = 0.2 (see Figure 3, top left). The initial pressure is set to zero.
We define the characteristic speed, U , as the maximum initial velocity and the
characteristic length, L , as the diameter of the circle.
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norm Variable Coarse Error Fine Error Order

L1 u0 9.90e-04 2.69e-04 1.88
u1 9.62e-04 2.63e-04 1.87
τ00 1.24e-03 3.06e-04 2.02
τ10 1.38e-03 3.40e-04 2.02
τ11 1.37e-03 3.39e-04 2.01
p 1.04e-03 2.68e-04 1.96

L2 u0 1.65e-03 4.34e-04 1.93
u1 1.66e-03 4.23e-04 1.97
τ00 1.89e-03 4.78e-04 1.98
τ10 3.06e-03 6.93e-04 2.14
τ11 3.27e-03 8.36e-04 1.97
p 2.52e-03 4.78e-04 2.40

L∞ u0 4.08e-02 6.32e-03 2.69
u1 4.15e-02 6.98e-03 2.57
τ00 5.11e-02 1.09e-02 2.23
τ10 8.36e-02 2.77e-02 1.59
τ11 1.45e-01 3.73e-02 1.95
p 7.76e-02 1.15e-02 2.75

Table 1. Solution error convergence rates for a Maxwell fluid
with a vortex initial condition in a rectangle. Data correspond to
Figures 1 and 2.

6.1. Maxwell fluid. For the Maxwell fluid, the rheological parameters are µs =

0, µp = 1.0, λ = 1.0, and ρ = 1.0. This gives the dimensionless parameters
Re= 1.0,We= 1.0, and Ma= 1.0 for the rectangular box geometry. The coarse
time step for each geometry is 3.2 × 10−3, corresponding to CFL ≈ 0.5. The
time-dependent normal velocity is shown in Figure 1. The elastic wave propagation
and reflection off the walls is clearly visible. The transverse velocity, stress, and
pressure corresponding to the final image of normal velocity are shown in Figure 2.
The solution error convergence after 400 fine time steps is given in Table 1. We use
the same rheological parameters for the circular geometry, leading to dimensionless
parameters Re= 0.9,We= 0.9, and Ma= 1.0. The time-dependent u0 profiles are
shown in Figure 3. Again, the elastic wave propagation and reflection off the walls
is easily visible. The u1 component of velocity, stress, and pressure corresponding
to the final image of u0 are shown in Figure 4. The solution error convergence after
400 fine time steps is given in Table 2.

For Maxwell fluids, we have observed that additional cell-centered filtering steps
(45) are required to prevent the buildup of divergent modes near cells with small
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Figure 4. Profiles for a Maxwell fluid in a disk at t = 0.2688 (last
image in Figure 3). Clockwise from top left: u1, −0.50 (red) to
0.50 (blue); normal stress τ00, −0.38 (red) to 0.67 (blue); normal
stress τ11, −0.38 (red) to 0.67 (blue); shear stress τ10, −0.53 (red)
to 0.53 (blue); hydrostatic pressure p, 0 (red) to 0.55 (blue).

Figure 5. Time-dependent un profiles of a Newtonian fluid with a
vortex initial condition in a rectangle. The domain has 256× 256
cells with 2 time step increments using 1t = 3.75× 10−3. The
range is from −0.25 (red) to 0.25 (blue).

volume fractions. In the other flow regimes, the nonzero solvent viscosity in the
diffusion equation solver smooths the velocity and helps eliminate the divergent
modes and additional filtering steps are not required. The approach taken here
to stabilize the method is to perform 1 filter iteration per time step at the coarse
resolution, 2 iterations at the medium resolution, and 4 iterations at the fine resolu-
tion. The additional filter steps are not required for the other flow regimes, but are
included for consistency.

6.2. Newtonian fluid. For the Newtonian fluid, the rheological parameters are
µs = 1.0, µp = 0.0, λ = 1.0 × 10−11, and ρ = 1.0 leading to dimensionless
parameters Re= 1.0 and We= 0.0 for the rectangular box geometry. Since µp = 0,
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norm Variable Coarse Error Fine Error Order

L1 u0 2.00e-03 5.70e-04 1.81
u1 2.05e-03 6.14e-04 1.74
τ00 2.01e-03 6.87e-04 1.55
τ10 1.62e-03 6.87e-04 1.39
τ11 2.03e-03 6.88e-04 1.56
p 1.49e-03 5.62e-04 1.40

L2 u0 3.06e-03 1.01e-03 1.59
u1 3.15e-03 1.08e-03 1.55
τ00 3.09e-03 1.02e-03 1.60
τ10 2.33e-03 8.78e-04 1.41
τ11 3.00e-03 1.00e-03 1.58
p 2.19e-03 8.60e-04 1.35

L∞ u0 3.11e-02 1.66e-02 0.91
u1 3.31e-02 1.64e-02 1.01
τ00 4.07e-02 2.24e-02 0.86
τ10 4.15e-02 1.94e-02 1.09
τ11 3.68e-02 2.31e-02 0.67
p 3.04e-02 2.16e-02 0.49

Table 2. Solution error convergence rates for a Maxwell fluid with
a vortex initial condition in a disk. Data correspond to Figures 3
and 4.

the polymeric stress remains zero at all times. The coarse time step for each
geometry is 7.5× 10−3, corresponding to CFL≈ 0.5. The time-dependent normal
velocity is shown in Figure 5, in which the vortex spreads out to fill the box and
decays over time. The transverse velocity and pressure corresponding to the final
image of normal velocity are shown in Figure 6. The solution error convergence
after 40 fine time steps is given in Table 3. Only a small number of time steps are
used because after 40 the fluid velocity has already decayed to less than two percent
of its initial value.

We use the same rheological parameters for the circular geometry, leading to
dimensionless parameters Re = 0.9 and We = 0. The time-dependent normal
velocity is shown in Figure 7. As with the rectangular box case, the vortex spreads
out to fill the circle and decays over time. The transverse velocity and pressure
corresponding to the final image of normal velocity are shown in Figure 8. The
solution error convergence after 20 fine time steps is given in Table 4.

6.3. Hybrid fluid. For the hybrid fluid, the rheological parameters are µs = 0.1,
µp= 0.9, λ= 1.0, and ρ= 1.0 leading to dimensionless parameters Re= 1.0,We=
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1.0, and Ma= 1.05 for the rectangular box geometry. The initial stress is set to zero.
The coarse time step is 3.2× 10−3 for each geometry, corresponding to CFL≈ 0.5.
The time-dependent normal velocity is shown in Figure 9. As is the case with the
Newtonian fluid, the vortex spreads out and decays over time, with a different shape
than the Newtonian case. The transverse velocity, stress, and pressure corresponding

Figure 6. Profiles for a Newtonian fluid in a rectangle at t =
2.25× 10−2 (last image in Figure 5). Left: ut , −0.15 (red) to 0.15
(blue); right: hydrostatic pressure p, 0 (red) to 1.96 (blue).

Figure 7. Time-dependent u0 velocity profiles of a Newtonian
fluid with a vortex initial condition in a disk. The domain has
128×128 cells with 2 time step increments using1t = 3.75×10−3.
The range is from −0.25 (red) to 0.25 (blue).

Figure 8. Profiles for a Newtonian fluid in a disk at t=2.25×10−2

(last image in Figure 7). Left: u1, −0.15 (red) to 0.15 (blue); right:
hydrostatic pressure p, 0 (red) to 0.032 (blue).
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norm Variable Coarse Error Fine Error Order

L1 u0 1.68e-04 3.53e-05 2.25
u1 1.68e-04 3.54e-05 2.25
p 3.15e-03 1.16e-03 1.44

L2 u0 2.26e-04 4.63e-05 2.28
u1 2.26e-04 4.64e-05 2.28
p 6.63e-03 2.00e-03 1.72

L∞ u0 2.36e-03 5.46e-04 2.11
u1 2.36e-03 5.46e-04 2.11
p 4.12e-02 1.59e-02 1.37

Table 3. Solution error convergence rates for a Newtonian fluid
with a vortex initial condition in a rectangle. Data correspond to
Figures 5 and 6.

norm Variable Coarse Error Fine Error Order

L1 u0 4.06e-04 9.44e-05 2.10
u1 4.06e-04 9.44e-05 2.10
p 5.12e-03 1.58e-04 5.02

L2 u0 4.88e-04 1.16e-04 2.07
u1 4.88e-04 1.16e-04 2.07
p 1.04e-02 2.48e-04 5.40

L∞ u0 1.06e-03 5.51e-04 0.95
u1 1.06e-03 5.51e-04 0.95
p 7.77e-02 1.13e-03 6.11

Table 4. Solution error convergence rates for a Newtonian fluid
with a vortex initial condition in a disk. Data correspond to Figures
7 and 8.

to the final image of normal velocity are shown in Figure 10. The solution error
convergence after 200 fine time steps is given in Table 5.

We use the same rheological parameters for the circular geometry, leading to
dimensionless parameters Re= 0.9,We= 0.9, and Ma= 1.05. The time-dependent
u0 component of velocity is shown in Figure 11. As with the rectangular box case,
the vortex spreads out to fill the circle and decays over time. The transverse velocity,
stress, and pressure corresponding to the final image of u0 are shown in Figure 12.
The solution error convergence after 200 fine time steps is given in Table 6.
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Figure 9. Time-dependent un profiles of a hybrid fluid with a
vortex initial condition in a rectangle. The domain has 256× 256
cells with 30 time step increments using 1t = 1.6× 10−3. The
range is from −0.25 (red) to 0.25 (blue).

Figure 10. Profiles for a hybrid fluid in a rectangle at t = 0.144
(last image in Figure 9). Clockwise from top left: ut , −0.15 (red)
to 0.15 (blue); normal stress τnn ,−0.25 (red) to 0.37 (blue); normal
stress τt t , −0.25 (red) to 0.37 (blue); shear stress τtn , −0.30 (red)
to 0.29 (blue); hydrostatic pressure p, 0 (red) to 0.55 (blue).

Figure 11. Time-dependent u0 profiles of a hybrid fluid with a
vortex initial condition in a disk. The domain has 128× 128 cells
with 20 time step increments using 1t = 1.6× 10−3. The range is
from −0.25 (red) to 0.25 (blue).
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norm Variable Coarse Error Fine Error Order

L1 u0 8.74e-05 2.62e-05 1.74
u1 8.99e-05 2.93e-05 1.62
τ00 1.31e-04 3.78e-05 1.80
τ10 1.74e-04 5.81e-05 1.58
τ11 1.33e-04 3.96e-05 1.75
p 2.49e-04 7.95e-05 1.64

L2 u0 1.98e-04 7.53e-05 1.39
u1 2.02e-04 7.75e-05 1.39
τ00 2.47e-04 1.00e-04 1.30
τ10 3.00e-04 1.28e-04 1.22
τ11 2.90e-04 1.40e-04 1.05
p 3.82e-04 1.28e-04 1.58

L∞ u0 6.75e-03 3.26e-03 1.05
u1 6.82e-03 3.29e-03 1.05
τ00 2.67e-03 3.45e-03 -0.37
τ10 8.52e-03 4.40e-03 0.95
τ11 4.72e-03 6.15e-03 -0.38
p 6.58e-03 3.16e-03 1.06

Table 5. Solution error convergence rates for a hybrid fluid with a
vortex initial condition in a rectangle. Data correspond to Figures 9
and 10.

Figure 12. Profiles for a hybrid fluid in a disk at t = 0.096 (last
image in Figure 11). Clockwise from top left: u1, −0.15 (red) to
0.15 (blue); normal stress τ00, −0.25 (red) to 0.35 (blue); normal
stress τ11, −0.25 (red) to 0.35 (blue); shear stress τ10, −0.30 (red)
to 0.30 (blue); hydrostatic pressure p, 0 (red) to 0.040 (blue).
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norm Variable Coarse Error Fine Error Order

L1 u0 1.21e-04 3.05e-05 1.99
u1 1.27e-04 3.40e-05 1.91
τ00 2.66e-04 6.62e-05 2.01
τ10 3.95e-04 1.25e-04 1.66
τ11 2.54e-04 6.39e-05 1.99
p 3.94e-04 1.40e-04 1.50

L2 u0 2.23e-04 6.86e-05 1.70
u1 2.27e-04 7.12e-05 1.67
τ00 3.53e-04 9.91e-05 1.83
τ10 4.94e-04 1.62e-04 1.60
τ11 3.44e-04 9.73e-05 1.82
p 4.82e-04 1.72e-04 1.49

L∞ u0 2.31e-03 1.15e-03 1.00
u1 2.30e-03 1.15e-03 1.00
τ00 4.47e-03 2.13e-03 1.07
τ10 3.78e-03 1.64e-03 1.21
τ11 4.75e-03 2.28e-03 1.06
p 2.19e-03 1.90e-03 0.20

Table 6. Solution error convergence rates for a hybrid fluid with a
vortex initial condition in a disk. Data correspond to Figures 11 and 12.

7. Conclusions

For each of the test problems, we demonstrate second-order convergence of the
solution error in L1 and first-order in L∞ for velocity and stress with an advective
CFL time step constraint of CFL≈ 0.5, as expected. This is an improvement over
[30], in which less than second-order convergence was obtained with a smaller time
step, and the algorithm did not support arbitrary smooth geometries. The algorithm
also exhibits at least first-order convergence in L1 for pressure, as expected. In
some cases, such as the Maxwell fluid in the rectangular geometry, the convergence
rates in L∞ exceed first-order. This is due to the fact that given the position and
shape of the expanded vortex, the largest magnitude errors occur in the interior of
the domain, where the algorithm is second-order.

A feature calling for further study is the apparent need for additional projection
filters (45) to smooth out the divergence in the velocity field of Maxwell fluids in
irregular cells. Approaches include different filtering stencils, or different covered
face state extrapolation algorithms.

The first obvious extension to this work is a three-dimensional discretization of
the equations. The upwind method [6] and discretizations for Poisson’s equation and
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the heat equation [29] in a three-dimensional embedded boundary framework have
already been developed, so the extension is straightforward. The methods in this
paper have been developed under the assumption that the geometry is sufficiently
smooth. Additional studies are required to determine the robustness of the algorithm
in the presence of discontinuous geometries, such as abrupt contractions. This will
enable comparisons to standard benchmark problems [1; 26; 27; 30], such as
the flow of elastic liquids in hard-cornered planar and axisymmetric contractions.
Additional studies are also required to examine the robustness of this algorithm
under higher values of We and Ma, and for a variety of operating conditions for
experimental comparison [12; 13; 14]. In addition, adaptive numerical algorithms
for the incompressible Navier–Stokes equations, in which the grid is locally refined
in regions of interest, are being developed [21]. Adaptive techniques have already
been used with success for hyperbolic conservation laws [6], so these two methods
can be combined to develop a new adaptive projection method for incompressible
viscoelasticity. Finally, another possible extension is the discretization of more
advanced constitutive models, such as the PTT [25], White–Metzner [35] and
Giesekus [11] models. The methods in this paper provide a framework for including
the additional terms present in these models.
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