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Abstract. SciDAC has had a major impact on computational beam dynamics and the design of
particle accelerators. Particle accelerators -- which account for half of the facilities in the DOE
Office of Science Facilities for the Future of Science 20 Year Outlook -- are crucial for US
scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design
calculations that were once thought impossible are now carried routinely, and new challenging
and important calculations are within reach. SciDAC accelerator modeling codes are being
used to get the most science out of existing facilities, to produce optimal designs for future
facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively
new ways of accelerating charged particle beams. In this poster we present highlights from the
SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in
regard to algorithm development, software development, and applications.

1.  Introduction
Particle accelerators have enabled remarkable scientific discoveries and important technological
advances that span several programs within the DOE Office of Science (DOE/SC). In the High Energy
Physics (HEP) and Nuclear Physics (NP) programs, experiments associated with high-energy
accelerators have led to important discoveries about elementary particles and the fundamental forces
of nature, quark dynamics, and nuclear structure. In the Basic Energy Sciences (BES) program and the
Biological and Environmental Research (BER) program, experiments with synchrotron light sources
and spallation neutron sources have been crucial to advances in the materials, chemical, and biological
sciences. In the Fusion Energy Sciences (FES) program, great strides have been made in developing
heavy-ion particle accelerators as drivers for High Energy Density Physics (HEDP) research and



ultimately inertial fusion energy. The importance of accelerators to the DOE/SC mission is evident
from an examination of the DOE “Facilities for the Future of Science: A Twenty-Year Outlook.” Of
the 28 facilities listed, 14 involve new or upgraded accelerator facilities [1].

The successful development of large accelerator facilities involves enormous investments in the
three paradigms of scientific research: theory, experiment, and simulation. Neglecting any of these can
lead to a failure to meet performance requirements, cost overruns, and ultimately, project failure.  As a
result, simulation has played, and will continue to play, an essential and critical role in the
development of virtually all the major accelerators in the USA and worldwide.

Recognizing the importance of particle accelerators to science and society, the present SciDAC
initiative includes in its portfolio the project, “Advanced Computing for 21st Century Accelerator
Science & Technology,” also knows as the SciDAC Accelerator Science & Technology (AST) project.
The goal of this project is to establish a comprehensive terascale simulation environment for the U.S.
particle accelerator community in order to meet the needs of DOE/SC accelerator projects – especially
its High Energy Physics and Nuclear Physics projects. The newly developed tools are now being used
by accelerator physicists and engineers across the country to solve the most challenging problems in
accelerator design, analysis, and optimization.

The AST project involves three main focus areas: computational beam dynamics, computational
electromagnetics, and modeling advanced accelerator concepts. This paper highlights
accomplishments in the beam dynamics area. A second paper in these proceedings, “ Simulation of
the Fermilab Booster using Synergia” by P. Spentzouris, presents a case study in the beam dynamics
area. Electromagnetic modeling is described in the paper of K. Ko, “Impact of SciDAC on Office of
Science Accelerators through Electromagnetic Modeling,” and in the paper by R. Lee,
“Progress/Achievements in ISIC/SAPP Collaborations for Electromagnetic Modeling of
Accelerators,” in these proceedings. Modeling advanced accelerators is described in the paper by W.
Mori, “Recent Advances in Modeling Lasers/Plasma Accelerators: A Path towards Miniaturizing
Accelerators from Kilometers to Meters,” and the paper by D. Bruhwiler, “Massively Parallel Particle-
in-cell Simulation of Advanced Particle Accelerator Concepts,” in these proceedings.

2.  Code Development
Particle simulation methods have been among the most successful and widely used methods in
computational beam physics, plasma physics, and astrophysics. Under the SciDAC AST project a
comprehensive, state-of-the-art set of parallel Particle-In-Cell (PIC) capabilities has been developed
including:

• IMPACT: An integrated suite of codes consisting of 2 PIC codes, a linac design code, and an
envelope code [2]. This package was originally developed to model high intensity ion linacs.
Its functionality has been greatly enhanced so that it is now able to model high brightness
electron beam dynamics (e.g. photocathodes), ion beam dynamics, and multi-species transport
through a wide variety of transport systems.

• BeamBeam3D: A code for modeling beam-beam effects in colliders [3,4]. This code contains
multiple models (weak-strong, strong-strong) and multiple collision geometries (head-on,
long-range, crossing angle). It has been used to model the Tevatron, PEP-II, RHIC, and LHC

• MaryLie/IMPACT: A code that combines the high-order optics modeling capabilities of the
MaryLie Lie algebraic beam transport code with the parallel PIC capabilities of IMPACT [5].
It is used to model space-charge effects in large circular machines such as the ILC damping
rings.

• Synergia: A parallel beam dynamics simulation framework based on modern programming
design [6]. Synergia combines multiple functionality, such as the space-charge capabilities of
IMPACT and the high-order optics capabilities of MXYZPLT, along with a “humane” user
interface and standard problem description.



The development of parallel terascale beam dynamics codes under the SciDAC AST project has
involved the combined efforts of many personnel from multiple disciplines. An example is provided
by the MaryLie/IMPACT (ML/I) code as shown in Figure 1. The development effort is shown
diagrammatically in the figure below. The contributors come from 5 national laboratories (LBNL,
LANL, FNAL, BNL, PSI), 3 universities (U. Maryland, UCLA, NIU), and a small business (Tech-X
Corporation). The multi-physics nature of the code is provided for by having various teams provide
specific capabilities (e.g. transfer maps for magnets and rf cavities, space-charge effects, wake field
effects). Collaboration with SAPP-supported researchers and the ISICs contribute to the incorporation
of optimized parallel PIC frameworks and Poisson solvers. The development team adopts, develops,
and incorporates standards for items such as problem specification (i.e. the “MAD” front-end) and
particle I/O. The code package includes a suite of test problems that serves the dual purpose of aiding
in code verification and providing users with a starting point for learning to use the code.

Figure 1. MaryLie/IMPACT (ML/I) code development is performed by a large, multi-disciplinary
team whose members provide specific capabilities needed to produce a coherent, comprehensive,

parallel, terascale beam dynamics code.

3.  Algorithm Development; ISIC and SAPP Collaborations
Crucial to the development of the AST project’s codes is the fact that many of them have been built
using capabilities provided through collaborations with the SciDAC Integrated Software Infrastructure
Centers (ISICs) and with other DOE/ASCR-supported activities such as the Scientific Applications
Partnership Program (SAPP). The capabilities include parallel linear system solvers, eigensolvers,
Poisson solvers, meshing technologies, adaptive grid technologies, statistical methods, and advanced
visualization techniques. In some cases, the use of advanced algorithms has led to a performance
increase of more than a factor of 100. The need to perform simulations accurately over a wide range of
spatial and temporal scales, using high-end computing platforms of thousands of processors (100’s of
thousands in the future) makes the development of new, scalable, parallel algorithms not only
desirable but essential.
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Recent accomplishments related to algorithm development for beam dynamics codes, several of
which involve ISIC and SAPP collaborations, include the following:

• Developed integrated Green function for high aspect ratio beams (J. Qiang, R. Ryne, LBNL)
• Statistical methods for phase space reconstruction from data [7] (D. Higdon, LANL)
• PARTVIEW/H5PART tools for large-scale data management and visualization in parallel PIC

codes (J. Shalf, C. Siegerist, LBNL; A. Adelmann, PSI)
• Wavelet solver developed and incorporated in IMPACT (I. Pogorelov, LBNL, B. Terzic, NIU)
• APDEC solvers incorporated into ML/I code; progress on AMR/PIC (P. Colella, D. Serafini,

P. McCorquodale)
• Developed shifted Green function for long-range beam-beam modeling (J. Qiang, LBNL)
• Multigrid solver developed, used to model RIA beam formation & transport (J. Qiang, LBNL)
• Wakefield module developed and incorporated into ML/I (R. Samulyak, BNL)
• Hybrid high performance visualization of particle data w/ large range of density scale (K.-L.

Ma, UC Davis)

Further details on the development of solvers by the APDEC ISIC are described in the paper by D.
Serafini, “Adaptive Mesh Refinement for Particle-in-cell Methods,” in these proceedings. Further
details on the application of visualization techniques for accelerator modeling are described in the
paper by K.-L. Ma, “Scientific Discovery through Advanced Visualization,” in these proceedings.

4.  Applications
SciDAC AST beam dynamics codes have been applied to several important projects within the DOE
Office of Science. Examples include existing colliders (Tevatron, RHIC, PEP-II), future colliders
(LHC, under construction), proposed linear colliders (ILC), high intensity machines (the Fermilab
booster, and the SNS ring under construction), linacs for radioactive ion beams (RIA, proposed), and
electron linacs for 4th generation light sources (LCLS, under construction).

4.1.  Application to the High Energy Physics (HEP) Program
SciDAC beam dynamics codes have been used to model several HEP machines including the
Tevatron, the Fermilab booster, PEP-II, and ILC damping rings. Simulation results for the proposed
ILC damping ring performed using MaryLie/IMPACT are shown in Figure 2. SciDAC Advanced
Accelerator codes have also had an impact on HEP beam dynamics modeling. For example, the code
QuickPIC has been used to model electron-cloud formation in the LHC and to study plasma
afterburner concepts.

Figure 2. Results of ML/I simulations of an ILC “dog-bone” damping ring (DR) design showing
space-charge induced emittance  growth using different space-charge models. Left (nonlinear space
charge model): the beam exhibits small emittance growth. Right (linear space charge model):  the

beam exhibits exponential growth due to a synchro-betatron resonance. The instability is a numerical
artifact caused by the simplified (linear) space-charge model (M. Venturini, LBNL).



4.2.  Application to the Nuclear Physics (NP) Program
SciDAC beam dynamics codes have been used to model the RHIC collider and the proposed RIA
accelerator. An example of RIA modeling is shown in Figure 3.

Figure 3. IMPACT-T simulation of the beam emerging from the RIA ECR ion source showing the
effect of electrode voltage on the beam quality emerging from the source. Left: correct voltage. Right:

incorrect voltage (J. Qiang, LBNL).

4.3.  Application to the Basic Energy Sciences (BES) Program
SciDAC beam dynamics codes have been used to model the SNS, LCLS, and ALS. Examples related
to the LCLS injector and to the design of an ultrafast streak camera for LCLS are shown in Figure 4.

Figure 4. Left: LCLS simulation using IMPACT-T: Large effect observed when using integrated
Green function compared with standard Green function (J. Qiang, LBNL and C. Limborg, SLAC).
Right: Plot of rms bunch length vs distance in the proposed LCLS streak camera showing the effect of
space charge on the bunch length (J. Qiang, LBNL).
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