Volume-of-Fluid Discretization Methods for PDE in Irregular Domains
Phillip Colella
Computing Sciences Directorate
Lawrence Berkeley National Laboratory
Berkeley, CA

Cartesian Grid Representation of Irregular Boundaries

Based on nodal-point representation (Shortley and Weller, 1938) or finite-volume representation (Noh, 1964).

Advantages of underlying rectangular grid:

- Grid generation is tractable (Aftosmis, Berger, and Melton, 1998).
- Good discretization technology, e.g. well-understood consistency theory for finite differences, geometric multigrid for solvers.
- Straightforward coupling to structured AMR (Chern and Colella, 1987; Young et. al., 1990; Berger and Leveque, 1991).

Lagrangian vs. Eulerian Representations of Free Surfaces

Lagrangian:

Eulerian:

Polygonal
(LANL, 1950s)

Volume of fluid (LANL, LLNL, 1960s)

Level Set
(Osher \& Sethian, 1988)

Finite-Volume Discretization - Fixed Boundaries

Consider PDEs written in conservation form:

$$
\nabla \cdot(\nabla \phi)=\rho \quad \frac{\partial U}{\partial t}+\nabla \cdot \vec{F}(U)=0
$$

- Primary dependent variables approximate values at centers of Cartesian cells. Extension of smooth functions to covered region exists, and extension operator is a bounded operator on the relevant function spaces.
- Divergence theorem over each control volume leads to "finite volume" approximation for $\nabla \cdot \vec{F}$:

$$
\nabla \cdot \vec{F} \approx \frac{1}{\kappa h^{d}} \int \nabla \cdot \vec{F} d x=\frac{1}{\kappa h} \sum \alpha_{s} \vec{F}_{s} \cdot \vec{n}_{s}+\alpha_{B} \vec{F} \cdot \vec{n}_{B} \equiv D \cdot \vec{F}
$$

- Away from the boundaries, method reduces to standard conservative finite difference discretization.
- If $\vec{F}_{s} \cdot \vec{n}_{s}$ approximates the value at the centroid to $O\left(h^{2}\right)$, then the truncation error $\tau=D \cdot \vec{F}-\nabla \cdot \vec{F}$ is given by

$$
\begin{aligned}
\tau & =O\left(h^{2}\right) \text { at interior cells (if approximation is smooth). } \\
& =O\left(\frac{h}{\kappa}\right) \text { at irregular control volumes. }
\end{aligned}
$$

Poisson's Equation

$$
\begin{aligned}
\Delta \phi=\rho \Rightarrow L^{h} \phi^{h} & =\rho^{h} \\
L^{h}=D \vec{F}, \quad \vec{F} & \approx \nabla \phi
\end{aligned}
$$

\vec{F} computed using linear interpolation of centered difference approximations to derivatives of ϕ.

$$
\begin{gathered}
L^{h}\left(\phi^{h}\right)_{\boldsymbol{i}}=\frac{1}{\kappa_{i}} \sum_{\boldsymbol{s} \in \mathcal{S}_{\boldsymbol{i}}} a_{\boldsymbol{s}} \phi_{\boldsymbol{s}}^{h} \\
a_{\boldsymbol{s}}=O\left(\frac{1}{h^{2}}\right) \text { uniformly w.r.t. } \kappa
\end{gathered}
$$

The small denominator can be eliminated by diagonal scaling, eliminating the obvious potential conditioning problem: we solve

$$
\kappa_{i} L^{h}\left(\phi^{h}\right)_{i}=\kappa_{i} \rho_{i}^{h}
$$

Modified Equation Analysis

Error equation: $\phi^{e x a c t, h}=\phi^{h}+\left(L^{h}\right)^{-1}(\tau)$
Modified equation: $\epsilon=\left(L^{h}\right)^{-1}(\tau) \approx \Delta^{-1} \tilde{\tau}$ where $\tilde{\tau}$ is some extension of τ, e.g. piecewise constant on each control volume.

Smoothing of truncation error leads to a solution error that is $O\left(h^{2}\right)$ in max norm.

Extension to Three Dimensions

Our matrices aren't symmetric, nor are they M-matrices.
There are two obvious ways to extend the $O\left(h^{2}\right)$ flux calculation in 2D to 3D:

For intermittent configurations of adjacent small control volumes, linear interpolation is unstable (point Jacobi diverges), while bilinear interpolation appears to always be stable. Also, the inconsistent method coming from piecewise-constant interpolation is stable.

Unstable cases correspond to problems where small subproblems have eigenvalues of the wrong sign: the spectrum of $P L^{h} P^{t}$ has elements in the right half-plane, where P is the projection onto a small set (2-8) of contiguous irregular control volumes.

Solution Error for Poisson's Equation in 3D

$$
\begin{array}{ccccccc}
\text { grid } & \|\epsilon\|_{\infty} & p_{\infty} & \|\epsilon\|_{2} & p_{2} & \|\epsilon\|_{1} & p_{1} \\
16^{3} & 4.80 \times 10^{-4} & - & 5.17 \times 10^{-5} & - & 1.83 \times 10^{-5} & - \\
32^{3} & 1.06 \times 10^{-4} & 2.17 & 1.25 \times 10^{-5} & 2.05 & 4.41 \times 10^{-6} & 2.05 \\
64^{3} & 2.43 \times 10^{-5} & 2.13 & 3.07 \times 10^{-6} & 2.02 & 1.09 \times 10^{-6} & 2.02
\end{array}
$$

Discretization of Hyperbolic Problems

$$
U^{n+1, h}=U^{n, h}-\Delta t D \cdot \vec{F}^{n+\frac{1}{2}}
$$

Truncation error on irregular cells:

$$
\tau \equiv \frac{U^{n+1, e x a c t}-U^{n, e x a c t}}{\Delta t}+D \cdot \vec{F}\left(U^{e x a c t}\right)=O(h)+O\left(\Delta t^{2}\right)+O\left(\frac{h}{\kappa}\right)
$$

Want to use a time step given by the CFL for cells without the boundary.

$$
\begin{aligned}
U^{n+1} & =U^{n}-\Delta t D \cdot \vec{F} \\
& =U^{n}-\frac{\Delta t}{\kappa h}\left(\sum_{s \in \text { faces }} \alpha_{s} \vec{F}_{s} \cdot \vec{n}_{s}+\alpha_{B} \vec{F} \cdot \vec{n}_{B}\right)
\end{aligned}
$$

Flux Difference Redistribution

In irregular cells, we hybridize the conservative update $(D \cdot \vec{F})$ with a nonconservative, but stable scheme $(\nabla \cdot \vec{F})^{N C}$, and redistribute the nonconservative increment to nearby cells.

$$
U^{n+1}=U^{n}-\Delta t(D \cdot \vec{F})^{N C}-w \Delta t\left((D \cdot \vec{F})-(D \cdot \vec{F})^{N C}\right)
$$

The weight w is chosen so that, as $\kappa \rightarrow 1, w \rightarrow 1$, and $w=O(\kappa)$.

The amount of mass lost from each cell is

$$
\delta M=-(1-w) \kappa\left((\nabla \cdot \vec{F})^{C}-(\nabla \cdot \vec{F})^{N C}\right)=O(h)
$$

We redistribute that mass to nearby cells in a volume-weighted way.

The truncation error for this method is $\tau=O(h)$ in cells sufficiently close to irregular cells, $\tau=O\left(h^{2}\right)$ otherwise.

Modified Equation Analysis

$$
\begin{gathered}
U^{h}=U+\epsilon \approx U^{\text {mod }} \\
\frac{\partial U^{\text {mod }}}{\partial t}+\nabla \cdot \vec{F}\left(U^{\text {mod }}\right)=\tilde{\tau}
\end{gathered}
$$

If the boundary is noncharacteristic, the large forcing on the boundary can only act for a short time: $\frac{d U}{d t}=\tilde{\tau}$, but the characteristic path is in the region where $\tilde{\tau}=O(h)$ for only a time $O(h / \lambda)$, where λ is the characteristic speed. In that case,

$$
U^{h}=U+O\left(h^{2}\right)
$$

uniformly in x. If the boundary is characteristic, then we observe

$$
\begin{aligned}
& U^{h}=U+O(h) \text { in } L^{\infty} \text { norm } \\
& U^{h}=U+O\left(h^{2}\right) \text { in } L^{1} \text { norm }
\end{aligned}
$$

Diffusion in a Time-Dependent Domain

$$
\begin{aligned}
\frac{\partial T}{\partial t} & =\Delta T+f \text { on } \Omega(t) \\
\frac{\partial T}{\partial n} & =\dot{m}+s T \text { on } \partial \Omega(t)
\end{aligned}
$$

In order to use a second-order accurate implicit time discretization, it is necessary to convert the moving boundary problem into a sequence of fixed boundary problems.

- Move the boundary, updating cells that are uncovered by appropriate extrapolation.
- Solve the heat equation on a fixed domain for one time step, using extrapolated boundary conditions.

If we use Crank-Nicolson for the second step, the resulting method is unstable. To obtain a stable, second-order accurate method, must use an implicit Runge-Kutta method with better stability properties.

$$
\begin{gathered}
\left(I-r_{1} \Delta\right)\left(I-r_{2} \Delta\right)^{n+1}=(I+a \Delta)^{n}+\Delta t\left(I+r_{4} \Delta\right) f^{n+\frac{1}{2}} \\
r_{1}+r_{2}+a=\Delta t, r_{1}+r_{2}+r_{4}=\frac{\Delta t}{2}, r_{1}+r_{2}>\frac{\Delta t}{2}
\end{gathered}
$$

Moving Boundary Calculation in Three Dimensions

To treat more complex problems, we

- Decompose them into pieces, each one of which is well-understood, and between which the coupling is not too strong;
- Use numerical methods based on our understanding of the components, coupled together using predictor-corrector methods in time.

Example: Incompressible Navier-Stokes equations

$$
\begin{gathered}
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}+\nabla p=\nu \Delta \vec{u} \\
\nabla \cdot \vec{u}=0
\end{gathered}
$$

These equations can be splitting into three pieces:
Hyperbolic: $\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}=0$
Parabolic: $\quad \frac{\partial \vec{u}}{\partial t}=\nu \Delta \vec{u}$
Elliptic: $\quad \Delta p=\nabla \cdot(-\vec{u} \cdot \nabla \vec{u}+\nu \Delta \vec{u})$

Problems Arising in Decomposition into Classical Components

Using asymptotics to eliminate fast scales, or split slow and fast scales.

- Low Mach number asymptotics to eliminate acoustic scales: incompressible flow, low-Mach-number combustion, anelastic models for geophysical flows (Rehm and Baum, 1978; Majda and Sethian, 1985; Lai, Bell, Colella, 1993).
- Allspeed methods - splitting dynamics into vortical and compressive components (Colella and Pao, 1999).
- Methods for splitting the fast dielectric relaxation dynamics in charged-fluid models of "almost" quasineutral plasmas (Vitello and Graves, 1997; Colella, Dorr, and Wake, 1999).

All of these approaches lead to the introduction of redundant equations or constraints: $p=$ const., $\dot{q}_{n e t}=\ldots$. The presence of such constraints complicate the formulation of time-discretization methods.

Hyperbolic PDEs containing gauge constraints, such as ideal MHD $(\nabla \cdot \vec{B}=0)$ or solid mechanics, are well-posed only if the constraint is satisfied. Truncation error may cause the constraint to be violated (Miller and Colella, 2001; Crockett, et. al., to appear).

Cartesian Grid Discretization of Free Boundary Problems

- Solution is double-valued on all cells intersecting the free boundary.
- Finite-volume discretization of conservation laws on each control volume on either side of the front.
- Motion of the front and discretization in the interior are coupled via the jump relations:
$\kappa^{n+1} U^{n+1}=\kappa^{n} U^{n}+\{$ sum of fluxes $\}$

Hyperbolic Free Boundary Problems

$$
\begin{gathered}
\frac{\partial U^{q}}{\partial t}+\nabla \cdot \overrightarrow{F^{q}}=0 \text { on } \Omega^{q}(t), q=1,2 \\
{[\vec{F} \cdot \vec{n}-s U]=g \text { on } \partial \Omega^{1 / 2}(t)} \\
{[f] \equiv f^{2}-f^{1}}
\end{gathered}
$$

$\frac{\mathrm{dx}}{\mathrm{dt}}=\vec{n} \mathrm{~s}$

- Discrete geometric quantities are a function of time, e.g., $\kappa=\kappa(t)$.
- Divergence theorem is applied in space-time to obtain discrete evolution equation:

$$
\begin{gathered}
0=\int \frac{\partial U}{\partial t}+\nabla \cdot \vec{F} d x d t= \\
\bar{\kappa}^{n+1} \bar{U}^{n+1}-\bar{\kappa}^{n} \bar{U}^{n}+\frac{\Delta t}{h}\left(\sum_{s \in \text { faces }} \bar{\alpha}_{s} \vec{F}_{s} \cdot \vec{n}_{s}+\bar{\alpha}_{B}\left(\vec{F} \cdot \vec{n}_{B}-s U\right)\right)
\end{gathered}
$$

Chenges to Fixed-Boundary Algorithm

- Riemann problem used to compute fluxes, speed of the front.
- Small-cell stability: mass increments are redistributed along characteristics in the direction normal to front.

$$
\begin{aligned}
\delta M & =\delta M^{+}+\delta M^{-} \\
\delta M^{+} & =\sum_{\lambda_{k} \geq 0}\left(l_{k} \cdot \delta M\right) r_{k}
\end{aligned}
$$

δM^{+}remains on the same side of the front as it was generated on, while δM^{-}is redistributed across the front.

- Accuracy: for genuinely nonlinear waves, free boundary is noncharacteristic, so solution error is one order smaller that truncation error in max norm.

Elliptic Free Boundary Problems

$$
\begin{gathered}
\beta \Delta \phi^{q}=\rho^{q} \text { on } \Omega^{q}, q=1,2 \\
{\left[\beta \frac{\partial \phi}{\partial n}\right]=g_{N},[\phi]=g_{D} \text { on } \partial \Omega^{1 / 2}}
\end{gathered}
$$

Given the values at the cell centers, the algorithm for the fixed boundary can be used to evaluate the operator, provided that one can find the values for ϕ_{B}^{q}. The jump relations lead to a pair of linear equations for ϕ_{B}^{q} :

$$
\begin{gathered}
\phi_{B}^{1}-\phi_{B}^{2}=g_{D}\left(\vec{x}_{B}\right) \\
\beta^{1} \frac{d \Phi^{1}}{d r}-\beta^{2} \frac{d \Phi^{2}}{d r}=g_{N}\left(\vec{x}_{B}\right)
\end{gathered}
$$

Where $\Phi^{q}(r)$ are the interpolating polynomials along the normal directions from \vec{x}_{B}.

Free Boundary Problems for Diffusion

$$
\begin{gathered}
\frac{\partial T^{\alpha}}{\partial t}=D^{\alpha} \Delta T^{\alpha}+f^{\alpha} \text { on } \Omega^{\alpha}(t), \alpha=1,2 \\
{\left[D \frac{\partial T}{\partial n}\right]=g_{N},[T]=g_{D} \text { on } \partial \Omega^{1 / 2}(t)}
\end{gathered}
$$

s is prescribed (not the Stefan problem).
As before, we convert a moving boundary problem into a sequence of problems on fixed boundaries.

$$
\begin{gathered}
{\left[D \frac{\partial T}{\partial n}\right]=g_{N}+\vec{\delta} \cdot\left[D \nabla \frac{\partial T}{\partial n}\right]} \\
{[T]=g_{D}+\vec{\delta} \cdot[\nabla T]+\frac{1}{2} \vec{\delta} \cdot[\nabla \nabla T] \cdot \vec{\delta}}
\end{gathered}
$$

Future Work and Open Questions

- Adaptive mesh refinement.
- Software infrastructure.
- Decomposition into classical components: phase change boundaries, surface tension.
- Consistent discretization methods for free-boundary case.
- Other applications: magnetic fusion, combustion, cell modeling, bio-MEMS.

