Volume-of-Fluid Discretization Methods for PDE in Irregular Domains Phillip Colella Computing Sciences Directorate Lawrence Berkeley National Laboratory Berkeley, CA

Cartesian Grid Representation of Irregular Boundaries

Based on nodal-point representation (Shortley and Weller, 1938) or finite-volume representation (Noh, 1964).

Advantages of underlying rectangular grid:

• Grid generation is tractable (Aftosmis, Berger, and Melton, 1998).

• Good discretization technology, e.g. well-understood consistency theory for finite differences, geometric multigrid for solvers.

• Straightforward coupling to structured AMR (Chern and Colella, 1987; Young et. al., 1990; Berger and Leveque, 1991).

Lagrangian vs. Eulerian Representations of Free Surfaces Lagrangian:

Eulerian:

Volume of fluid (LANL, LLNL, 1960s)

Level Set (Osher & Sethian, 1988)

Finite-Volume Discretization - Fixed Boundaries

Consider PDEs written in conservation form:

• Primary dependent variables approximate values at centers of Cartesian cells. Extension of smooth functions to covered region exists, and extension operator is a bounded operator on the relevant function spaces.

• Divergence theorem over each control volume leads to "finite volume" approximation for $\nabla \cdot \vec{F}$:

$$\nabla \cdot \vec{F} \approx \frac{1}{\kappa h^d} \int \nabla \cdot \vec{F} dx = \frac{1}{\kappa h} \sum \alpha_s \vec{F}_s \cdot \vec{n}_s + \alpha_B \vec{F} \cdot \vec{n}_B \equiv D \cdot \vec{F}$$

• Away from the boundaries, method reduces to standard conservative finite difference discretization.

• If $\vec{F}_s \cdot \vec{n}_s$ approximates the value at the centroid to $O(h^2)$, then the truncation error $\tau = D \cdot \vec{F} - \nabla \cdot \vec{F}$ is given by

 $\tau = O(h^2)$ at interior cells (if approximation is smooth).

$$= O(\frac{h}{\kappa})$$
 at irregular control volumes.

Poisson's Equation

$$\Delta \phi = \rho \Rightarrow L^h \phi^h = \rho^h$$
$$L^h = D\vec{F}, \quad \vec{F} \approx \nabla \phi$$

 \vec{F} computed using linear interpolation of centered difference approximations to derivatives of ϕ .

$$\begin{split} L^h(\phi^h)_{\boldsymbol{i}} &= \frac{1}{\kappa_{\boldsymbol{i}}} \sum_{\boldsymbol{s} \in \mathcal{S}_{\boldsymbol{i}}} a_{\boldsymbol{s}} \phi^h_{\boldsymbol{s}} \\ a_{\boldsymbol{s}} &= O(\frac{1}{h^2}) \text{ uniformly w.r.t. } \kappa \end{split}$$

The small denominator can be eliminated by diagonal scaling, eliminating the obvious potential conditioning problem: we solve

$$\underline{\kappa_{i}}L^{h}(\phi^{h})_{i} = \underline{\kappa_{i}}\rho_{i}^{h}$$

 $\begin{array}{l} \mbox{Modified Equation Analysis} \\ \hline \mbox{Error equation: } \phi^{exact,h} = \phi^h + (L^h)^{-1}(\tau) \\ \hline \mbox{Modified equation: } \epsilon = (L^h)^{-1}(\tau) \approx \Delta^{-1}\tilde{\tau} \\ \hline \mbox{where } \tilde{\tau} \mbox{ is some extension of } \tau, \mbox{ e.g.} \\ \mbox{piecewise constant on each control volume.} \end{array}$

Smoothing of truncation error leads to a solution error that is $O(h^2)$ in max norm.

Extension to Three Dimensions

Our matrices aren't symmetric, nor are they M-matrices.

There are two obvious ways to extend the $O(h^2)$ flux calculation in 2D to 3D:

For intermittent configurations of adjacent small control volumes, linear interpolation is unstable (point Jacobi diverges), while bilinear interpolation appears to always be stable. Also, the inconsistent method coming from piecewise-constant interpolation is stable.

Unstable cases correspond to problems where small subproblems have eigenvalues of the wrong sign: the spectrum of PL^hP^t has elements in the right half-plane, where P is the projection onto a small set (2-8) of contiguous irregular control volumes. Solution Error for Poisson's Equation in 3D

grid	$\ \epsilon\ _{\infty}$	p_{∞}	$\ \epsilon\ _2$	p_2	$\ \epsilon\ _1$	p_1
16^{3}	4.80×10^{-4}		5.17×10^{-5}		1.83×10^{-5}	
32^{3}	1.06×10^{-4}	2.17	1.25×10^{-5}	2.05	4.41×10^{-6}	2.05
64^{3}	2.43×10^{-5}	2.13	3.07×10^{-6}	2.02	1.09×10^{-6}	2.02

Discretization of Hyperbolic Problems

$$U^{n+1,h} = U^{n,h} - \Delta t D \cdot \vec{F}^{n+\frac{1}{2}}$$

Truncation error on irregular cells:

$$\tau \equiv \frac{U^{n+1,exact} - U^{n,exact}}{\Delta t} + D \cdot \vec{F}(U^{exact}) = O(h) + O(\Delta t^2) + O(\frac{h}{\kappa})$$

Want to use a time step given by the CFL for cells without the boundary.

$$U^{n+1} = U^n - \Delta t D \cdot \vec{F}$$

= $U^n - \frac{\Delta t}{\kappa h} (\sum_{s \in faces} \alpha_s \vec{F}_s \cdot \vec{n}_s + \alpha_B \vec{F} \cdot \vec{n}_B)$

Flux Difference Redistribution

In irregular cells, we hybridize the conservative update $(D \cdot \vec{F})$ with a nonconservative, but stable scheme $(\nabla \cdot \vec{F})^{NC}$, and redistribute the nonconservative increment to nearby cells.

$$U^{n+1} = U^n - \Delta t (D \cdot \vec{F})^{NC} - w \Delta t ((D \cdot \vec{F}) - (D \cdot \vec{F})^{NC})$$

The weight *w* is chosen so that, as $\kappa \to 1$, $w \to 1$, and $w = O(\kappa)$.

The amount of mass lost from each cell is

$$\delta M = -(1-w)\kappa((\nabla \cdot \vec{F})^C - (\nabla \cdot \vec{F})^{NC}) = O(h)$$

We redistribute that mass to nearby cells in a volume-weighted way.

The truncation error for this method is $\tau = O(h)$ in cells sufficiently close to irregular cells, $\tau = O(h^2)$ otherwise.

Modified Equation Analysis

$$U^{h} = U + \epsilon \approx U^{mod}$$
$$\frac{\partial U^{mod}}{\partial t} + \nabla \cdot \vec{F}(U^{mod}) = \tilde{\tau}$$

If the boundary is noncharacteristic, the large forcing on the boundary can only act for a short time: $\frac{dU}{dt} = \tilde{\tau}$, but the characteristic path is in the region where $\tilde{\tau} = O(h)$ for only a time $O(h/\lambda)$, where λ is the characteristic speed. In that case,

 $U^h = U + O(h^2)$

uniformly in x. If the boundary is characteristic, then we observe

 $U^{h} = U + O(h)$ in L^{∞} norm $U^{h} = U + O(h^{2})$ in L^{1} norm

Diffusion in a Time-Dependent Domain

$$\frac{\partial T}{\partial t} = \Delta T + f \text{ on } \Omega(t)$$

$$\frac{\partial T}{\partial n} = \dot{m} + sT \text{ on } \partial \Omega(t)$$

In order to use a second-order accurate implicit time discretization, it is necessary to convert the moving boundary problem into a sequence of fixed boundary problems.

- Move the boundary, updating cells that are uncovered by appropriate extrapolation.
- Solve the heat equation on a fixed domain for one time step, using extrapolated boundary conditions.

If we use Crank-Nicolson for the second step, the resulting method is unstable. To obtain a stable, second-order accurate method, must use an implicit Runge-Kutta method with better stability properties.

$$(I - r_1 \Delta)(I - r_2 \Delta)^{n+1} = (I + a\Delta)^n + \Delta t(I + r_4 \Delta)f^{n+\frac{1}{2}}$$
$$r_1 + r_2 + a = \Delta t , r_1 + r_2 + r_4 = \frac{\Delta t}{2} , r_1 + r_2 > \frac{\Delta t}{2}$$

Moving Boundary Calculation in Three Dimensions

To treat more complex problems, we

• Decompose them into pieces, each one of which is well-understood, and between which the coupling is not too strong;

• Use numerical methods based on our understanding of the components, coupled together using predictor-corrector methods in time.

Example: Incompressible Navier-Stokes equations

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \nabla p = \nu \Delta \bar{u}$$
$$\nabla \cdot \vec{u} = 0$$

These equations can be splitting into three pieces:

Hyperbolic:
$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} = 0$$

Parabolic: $\frac{\partial \vec{u}}{\partial t} = \nu \Delta \vec{u}$
Elliptic: $\Delta p = \nabla \cdot (-\vec{u} \cdot \nabla \vec{u} + \nu \Delta \vec{u})$

Problems Arising in Decomposition into Classical Components

Using asymptotics to eliminate fast scales, or split slow and fast scales.

- Low Mach number asymptotics to eliminate acoustic scales: incompressible flow, low-Mach-number combustion, anelastic models for geophysical flows (Rehm and Baum, 1978; Majda and Sethian, 1985; Lai, Bell, Colella, 1993).
- Allspeed methods splitting dynamics into vortical and compressive components (Colella and Pao, 1999).
- Methods for splitting the fast dielectric relaxation dynamics in charged-fluid models of "almost" quasineutral plasmas (Vitello and Graves, 1997; Colella, Dorr, and Wake, 1999).

All of these approaches lead to the introduction of redundant equations or constraints: p = const., $\dot{q}_{net} = ...$ The presence of such constraints complicate the formulation of time-discretization methods.

Hyperbolic PDEs containing gauge constraints, such as ideal MHD ($\nabla \cdot \vec{B} = 0$) or solid mechanics, are well-posed only if the constraint is satisfied. Truncation error may cause the constraint to be violated (Miller and Colella, 2001; Crockett, et. al., to appear).

Cartesian Grid Discretization of Free Boundary Problems

- Solution is double-valued on all cells intersecting the free boundary.
- Finite-volume discretization of conservation laws on each control volume on either side of the front.
- Motion of the front and discretization in the interior are coupled via the jump relations: $\kappa^{n+1}U^{n+1} = \kappa^n U^n + \{ \text{ sum of fluxes } \}$

• Discrete geometric quantities are a function of time, e.g., $\kappa = \kappa(t)$.

• Divergence theorem is applied in space-time to obtain discrete evolution equation:

$$0 = \int \frac{\partial U}{\partial t} + \nabla \cdot \vec{F} dx dt = \bar{\kappa}^{n+1} \bar{U}^{n+1} - \bar{\kappa}^n \bar{U}^n + \frac{\Delta t}{h} (\sum_{s \in faces} \bar{\alpha}_s \vec{F}_s \cdot \vec{n}_s + \bar{\alpha}_B (\vec{F} \cdot \vec{n}_B - sU))$$

Chenges to Fixed-Boundary Algorithm

- Riemann problem used to compute fluxes, speed of the front.
- Small-cell stability: mass increments are redistributed along characteristics in the direction normal to front.

$$\delta M = \delta M^+ + \delta M^-$$
$$\delta M^+ = \sum_{\lambda_k \ge 0} (l_k \cdot \delta M) r_k$$

 δM^+ remains on the same side of the front as it was generated on, while δM^- is redistributed across the front.

• Accuracy: for genuinely nonlinear waves, free boundary is noncharacteristic, so solution error is one order smaller that truncation error in max norm.

Given the values at the cell centers, the algorithm for the fixed boundary can be used to evaluate the operator, provided that one can find the values for ϕ_B^q . The jump relations lead to a pair of linear equations for ϕ_B^q :

$$\phi_B^1 - \phi_B^2 = g_D(\vec{x}_B)$$
$$\beta^1 \frac{d\Phi^1}{dr} - \beta^2 \frac{d\Phi^2}{dr} = g_N(\vec{x}_B)$$

Where $\Phi^q(r)$ are the interpolating polynomials along the normal directions from \vec{x}_B .

Free Boundary Problems for Diffusion

$$\frac{\partial T^{\alpha}}{\partial t} = D^{\alpha} \Delta T^{\alpha} + f^{\alpha} \text{ on } \Omega^{\alpha}(t) \text{ , } \alpha = 1,2$$
$$[D\frac{\partial T}{\partial n}] = g_N \text{ , } [T] = g_D \text{ on } \partial \Omega^{1/2}(t)$$

s is prescribed (*not* the Stefan problem).

As before, we convert a moving boundary problem into a sequence of problems on fixed boundaries.

$$[D\frac{\partial T}{\partial n}] = g_N + \vec{\delta} \cdot [D\nabla \frac{\partial T}{\partial n}]$$
$$[T] = g_D + \vec{\delta} \cdot [\nabla T] + \frac{1}{2}\vec{\delta} \cdot [\nabla \nabla T] \cdot \vec{\delta}$$

Future Work and Open Questions

- Adaptive mesh refinement.
- Software infrastructure.
- Decomposition into classical components: phase change boundaries, surface tension.
- Consistent discretization methods for free-boundary case.
- Other applications: magnetic fusion, combustion, cell modeling, bio-MEMS.