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Chapter 1 

Introduction 

FIDIL (for FInite DIfference Language) is a language supporting finite differ
ence and particle method computations. It extends the semantic domain of 
FORTRAN-like algebraic languages with facilities for construction, composi
tion, refinement, and other manipulation of grids-called domains-and for 
performing computations on functions defined over these domains. FIDIL is 
an attempt to automate much of the routine bookkeeping that forms a large 
part of many programs involving PDEs, and to bring the semantic level of 
these programs closer to that at which the algorithms are conceived and 
published. 

This report gives the current definition of the FIDIL language. We expect 
the definition to evolve rapidly with experience. 
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Chapter 2 

Notation 

In BNF syntactic descriptions, a construct of the form "{C .. . }" indicates 
o or more instances of the C. A construct of the form "{ C (7 ••• }," where 
(J' is a punctuation mark, indicates 0 or more instances of C separated by ()" 
characters. A superscripted '+' after the closing brace indicates 1 or more 
instead of 0 or more. A construct surrounded by square brackets (I: ]) indicates 
o or 1 instances of the construct. A list of BNF clauses separated by vertical 
bars (I) denote alternatives. Set braces, square brackets, vertical bars, and 
other meta-syntactic marks that are intended as terminal symbols in the 
grammar are surrounded by single quotes (e.g., '[' and ']'). Other terminal 
symbols may also be placed in single quotes, as clarity dictates. 

Non-terminal symbols appear within angle brackets «». Parts of the 
symbol that appear in slanted type are comments for syntactic purposes, but 
may have semantic significance. For example, "< infix operator>" is syntac
tically any operator, but must also appear within the scope of a declaration 
for that operator as an infix operator. Certain non-terminals are not defined; 
their definitions (which may be context-sensiti ve) are implied by their names. 
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Chapter 3 

Lexical Details 

FIDIL source text is genera.lly free-form. Blanks or punctuation must delimit 
each end of all keywords, identifiers, and numbers, and may not appear within 
them. Blanks or non-operator characters (see below) must delimit each end 
of all operators, and may not appear within them. Beginnings and ends 
of lines, comments, and tabs all count as blanks outside of string literals. 
Blanks are insignificant except as delimiters or characters in string literals. 
Keywords, which in the rest of this document are indicated by bold face type, 
are reserved. 

Identifiers have the following, fairly conventional, syntax. 

<identifier> ;:= <letter> { <letter or digit> ... } 
<letter> ::= 

'a' I ... / 'z' I 'A' I ... / 'Z' I '-' 
<digit> ::= 

'0' 1 ... / '9' 

Identifiers may be of any length. The cases of letters composing the identifier 
are significant; for example the identifier 'x' is distinct from 'X'. 

Numeric literals are formed according to the following syntax. 

<number> ::= 
<integer literal> [ 'i' ] 
<real literal> [ 'i' ] 

<integer literal> ::= 
{ <digit> ... }+ 

5 



<real literal> ::== 
<integer literal> <exponent> 
<integer literal> ' .' [ <integer literal> [ <exponent> ] ] 
, .' <integer literal> [ <exponent> ] 

<sign> ::== '+' I '-' 
<exponent> ::= 

E [ [ <sign> ] <integer literal> ] 
D [ [ <sign> ] <integer literal> ] 

The letter 'i' appended to a number (without intervening blanks) indicates 
a purely imaginary quantity. The letter 'D' in the exponent of a real literal 
indicates a long real quantity and 'E' denotes a short real quantity. In the 
absence of such an indication, 'D' is assumed. All of the letters 'i', 'E', and 
'D' in these contexts may appear in either case. When the integer literal 
in an exponent is missing, it defaults to O. Programmers can specify signed 
numbers as expressions involving a numeric literal and a unary minus or plus 
operator. 

String Ii terals denote arrays of characters (type [1 .. n] char, for n ~ 
o the number of characters.) They have the following syntax. 

<string literal> ::= 

'II' { <string literal character> ... } 'tI' 
<string literal character> ::= 

<any character other than II and end of line> 
, \' <any character other than end of line> 

Characters following a backslash are interpreted as in C. 
Comments begin with '/*' and end with '*/'. They may span any number 

of lines. A '/ *' sequence inside a comment is ignored. 
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Chapter 4 

Basic Program Structure 

Syntax 

<compilation> ::== {<compilation item> ';' ... } [ , ; , ] 
<compilation item> ::== 

<outer declaration> 
export { <identifier> ' " ... } + 

<outer declaration> ::== 

Semantics 

[ external ] <variable declaration> 
<outer constant declaration list> 
<type declaration> 
<operator declaration> 

A compilation is a collection of declarations of variables, subprograms, 
and other constants, together with directives for linking together declarations 
in separately processed compilations. A program is a collection of one or more 
compilations that is sufficiently complete to execute. 

Each outer declaration has a scope that begins at the defining instance of 
the entity declared and continues to the end of the compilation. The exports 
clause extends the scope of the declaration of any identifier listed to other 
compilations that reference the identifier in external declarations. Types may 
not be exported (but the #include preprocessor directive can give the effect 
of exporting and importing types.) An external declaration is either a vari
able declaration prefixed by the keyword external or a subprogram constant 
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defined with a literal whose body is external (see §8.2). In any compilation, 
there must be exactly one non-external declaration of each identifier in an 
exports list (such a declaration is called an exported declaration). 

When the compilations forming a program are linked, there must be at 
most one exported declaration for any identifier. There must be an exported 
declaration for every external variable and for every external subprogram 
for which there is a call in one of the compilations. The type and class 
(variable or constant) of every external declaration must match that of the 
corresponding exported declaration. 

Every program (but not every compilation) must contain a distinguished 
procedure main. Execution of the program consists of first executing all outer 
declarations in order (that is, in textual order within each compilation, with 
compilations executed in an order specified to the linker) and then calling 
the procedure main. 

Examples 

export current..parameters J forceJn J nd; 

let 
force.-in = proc (Position x) -> Force: ... ; 
1* Exported function. *1 

[1 .. 3J long real current...parameters; 
1* Exported variable *1 
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Chapter 5 

Preprocessing 

It is often useful to be able to group shared definitions in header files that 
can be incorporated in other source files without fear of transcription error. 
For this purpose, FID 1L uses the same preprocessing as is provided by the 
C language. Source lines beginning with the character '#' are assumed to 
be preprocessor directives. A directive of the form 

#include Itfile-name" 

will insert the contents of the named file in place of the directive. 
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Chapter 6 

Declarations 

Syntax 

<outer constant declaration list> ::== 

let { <outer constant declaration> ' " ... } + 
<constant declaration list> ::== 

let { <constant declaration> ' J' ... } + 
<constant declaration> ::== 

<identifier> = <expression> 
'(' { <identifier> ' " ... } + ') 1 = <expression> 
<operator> = <subprogram expression> 

<outer constant declaration> ::== 

< constant declaration> 
<identifier> = <generic subprogram literal> 
<operator> = <generic subprogram literal> 

<variable declaration> ::== 
<type> { <identifier> ' J' ... } + 

<type declaration> ::== 
type { <identifier> = <type> , ... } + 

Semantics 
A scope is a section of program text. Certain program constructs deter

mine a defining scope. For example, the text of a subprogram literal is a 
defining scope. The scope of a declaration is the section of program text to 
which it applies. It begins at the point of the declaration (i.e., it includes 
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the text of the declaration itself) and continues to the end of the innermost 
defining scope in which that declaration appears. The meaning of a given 
instance of an identifier or operator is governed by the declarations in whose 
scope it appears. When more than one declaration is present, the one that 
applies is determined by the rules for resolving ambiguity in §6.1. 

Some declarations do not themselves indicate the creation of a declared 
entity, but rather make reference to another declaration that appears else
where for the purpose of enlarging that declaration's scope. We refer to such 
definitions collectively as incomplete declarations, and all others as complete 
declarations. The external declarations form one kind of incomplete declara
tions. The other kind is the forward declaration, described in §8.2. External 
declarations may be used to extend the scope of a declaration in one com pi
lation to another compilation. Forward declarations may be used to extend 
the scope of a subprogram backwards from its complete definition so as to 
permit mutual recursion. They may also be used for documentation. It is not 
necessary that there be a complete declaration corresponding to a given in
complete declaration if the entity created by the definition is never referenced 
in the text of a compilation. 

Each execution of a complete declaration creates an instance of the de
clared entity (a variable, type, or constant). Likewise, every execution of 
the text forming a defining scope creates an instance of that defining scope, 
which vanishes when that execution of the defining scope completes. The 
extent of an instance of a declaration is the period of execution time during 
which that instance exists. This extends from the execution of the decla
ration itself until exit from the instance of the defining scope during which 
the declaration was executed. Outer declarations each have a single instance 
whose extent ends only upon termination of the entire program. 

Constant declarations define identifiers and operators to the left of the 
equals (=) signs to denote the values (subprograms are also values) to the right 
of the equals signs. Values are computed when the declaration is executed. 
When the defining expression is a composite object (a map or record), the 
left side may be a list of identifiers in parentheses, which are ascribed the 
values of the components of the defining expression according to position. 
There must be exactly as many identifiers as components. 

The declarations in a constant declaration list may either be opaque or 
transparent, depending on the defining expression. A declaration whose defin
ing expression is a subprogram literal is transparent; all others are opaque. 
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Informally, opaque declarations hide previous declarations of the same iden
tifiers, while transparent declarations introduce possible interpretations of 
identifiers without hiding previous ones. Variable declarations and formal 
parameter declarations are also opaque. §6.1 defines these terms more pre
cisely. 

A type declaration defines one or more identifiers to denote types. Type 
declarations are opaque. §7 describes the possible definitions for such iden
tifiers. 

Examples 

let 
nd = 3, 1* Simple scalar *1 
Force = [1 .. nd] long real J 1* Type *1 
(xO, xl, x2) = V; 1* Where V is a vector dimensioned 1 .. 3 *1 

6.1 Resolving ambiguity 

When an instance of an identifier appears in the scope of more than one dec
laration of that identifier, there are two ways of resolving the resulting ambi
guity. First, certain declarations hide previous ones due to opacity. Second, 
the type-consistency rules (which govern, for example, the required types for 
subprogram parameters) restrict the set of admissible interpretations of an 
instance. 

An opaque declaration of an identifier (as defined in §6) hides any pre
ceding declaration of that identifier throughout the scope of the opaque dec
laration. As an aid to catching certain kinds of error, an opaque declaration 
may not hide a declaration in the same defining scope. 

After considering opacity, there may still be multiple declarations covering 
a particular instance-in which case the declared identifier or operator is said 
to be overloaded. A choice of declarations for all the instances in an expression 
is called an interpretation. An interpretation is legal if it obeys the type rules 
of the language (e.g., the rule that an actual parameter of a function must 
have the type indicated by the corresponding formal parameter). There must 
be at least one legal interpretation, and the set of legal interpretations must 
be such that the types of the expression and all of its subexpressions are 
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uniquely determined. The interpretation chosen is the one that applies the 
first applicable declaration in order of appearance to each instance. 

6.2 Subprogram and Operator Declarations 

Syntax 

<operator> ::== 
<predefined operator> 
<other operator> 

<other operator> ::== 

<identifier> 
<operator character> [ <operator character> [ <operator character> ]] 
'(' <operator character> [ <operator character> ] ')' 

<operator character> ::== 

'*' I 'I' I '+' I '-' 1 '<' I '>' I '=' 
'(0' I 'I' I 'Ye' I '1'1 '&' I ,-, I , ... , 

<operator declaration> ::== 

Semantics 

prec <predefined operator> operator { <other operator> ",' ... } + ; 
postfix operator { <other operator> 1 ••• } + ; 

An ordinary subprogram is declared by a constant declaration whose 
right-hand side is a subprogram literal. A subprogram's designator may 
be an operator, in which case calls on the subprogram take the form of ex
pressions in which the designator acts as a prefix, infix (binary), or postfix 
operator. Prefix and postfix operators must be declared with one argument; 
infix (binary) operators must be declared with two. Declarations of oper
ators as infix versus prefix operators are distinguished by the numbers of 
arguments. When an identifier is an operator, it is reserved for use as an 
operator only. In a given compilation, an operator may be overloaded to be 
both an infix and a prefix operator but no other combination is allowed. 

Any 'other operator' used in a program must be declared in an operator 
declaration before its first appearance in either an expression or a subpro
gram designator spec. All such operators are left associative and have the 
same precedence as the predefined operator that appears in their operator 
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declaration. An operator may appear in any number of operator declarations 
within a single compilation, but must be given the same precedence in each. 
All postfix operators have the highest precedence. 

14 



Chapter 7 

Data Types and Type 
Constructors 

Syntax 

<type> ::= 

Semantics 

<user-defined type identifier> 
<basic scalar type> 
<record type> 
<domain type> 
<map type> 
<subprogram type> 

FIDIL supports several classes of data type, and allows the programmer to 
define new types within some of those classes. The following sections describe 
the type denotations. Identifiers defined to be types may be used where type 
names are allowed (e.g., to define variables or the types of parameters.) 

In several places, we will refer to two types as being equivalent. A type 
is always equivalent to itself. The following sections define type equivalence 
for particular classes of types. We will also refer to types being assignment 
compatible. We say that a type Tl is assignment compatible with type T2 if 
values of type Tl are allowed to be assigned to objects of type T2 , or passed 
as value parameters to formals of type T2 • Equivalent types are always as
signment compatible. following sections define assignment compatibility 
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for each type class. 

7.1 Basic Scalar Types 

Syntax 

<basic scalar type> ::= 

Semantics 

[ long] integer 
[ long] real 
[ long] complex 
logical 
char 

The basic scalar types are the familiar numeric, logical (true/false valued), 
and character types. The meaning of the qualifier "long" is implementation
dependent. In the case of real and complex types, it is intended to correspond 
to double-precision declarations in FORTRAN. It is not necessary for long 
quantities to have a precision or range different from non-long quantities. 

Two scalar types are equivalent if and only if their denotations are equiv
alent. A short scalar type is assignment compatible with the corresponding 
long type (but not the reverse). 

7.2 Record Types 

Syntax 

<record type> ::= 

struct '[' { <field group> ';' ... } + [ ';' ] 'J' 
<field group> ::= 

<type> { <identifier> ' " ... } 

Semantics 
A value or object having a record type is composed of fields as indicated 

in the definition of the record type. If T I , •. • , Tn are type denotations, then 
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let R = struct [ Tl XU, X12, ••• ; . .. Tn Xnl,'" J 
R x; 

defines R to be a record type and x to be a single variable of that type. Each 
R consists of fields, which are accessed by (prefix) selectors named Xij. The 
syntax is identical to that for function calls. Like subprograms in general, 
record field selector names may be overloaded. 

A record type M is equivalent to type M' if and only if M' is a record 
type with the same number of fields in the same order with the same names, 
and the type of each field of M is equivalent to the corresponding field's type 
in M'. Only equivalent record types are assignment compatible. 

7.3 Map and Domain Types 

Syntax 

<domain type> ::= 
[ < domain qualifier> ] domain 

[ <domain qualifier> ] domain' [' <integer expression> 'J' 
<map type> ::= 

[ flex] <unspecific map domain> <type> 
<specific map domain> <type> 
valtype '(' < domain expression> ')' 

<unspecific map domain> ::= 

[ <domain qualifier> ] '[' [ '.' <integer expression> ] 'J' 
<specific map domain> ::= 

[ <domain qualifier> ] '[' <domain expression> 'J' 
<rectangular domain constructor> 

< domain qualifier> :: = 
rect 

An n-dimensional domain is a subset of zn, and has a domain type de
noted domain En] We call n the arity of the domain. An element of a 
one-dimensional domain is an integer; an element of an n-dimensional do
main, for n > 1, is itself a map with type [1 .. n] integer; that is, it is a 
tuple of n integers. The notation valtype(D) is an abbreviation of the type 
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[1 .. nJ integer, where n > 1 is the arity of D, or of the type integer if 
n L Two domain types are equivalent if their arity is identical. 

A map is a mapping from a domain to some codomain; map types are 
an extension of ordinary array types. Two map types are equivalent if their 
domains have the same arity, they have the same flexibility (indicated by 
the presence or absence of the keyword flex), and their codomain types are 
identical. Two map types are assignment compatible if both domains have 
the same arity and the codomain types are equivalent. A map type is said to 
be unspecific if it is not flexible and either has an unspecific map domain or an 
unspecific codomain. An unspecific domain is denoted [] (one-dimensional) 
or [*n] (n-dimensional). Record types are unspecific if they have at least 
one unspecific field type. 

The modifier flex indicates that variables of the type have a modifiable 
domain. If M is a map type denoted by 

flex [*n] T 

and X is a variable of type M, then it is legal to assign to domainOf(X) 
and it is legal to assign to X a map with a domain differing from that of 
X. In general, T may be a type with map components that themselves have 
unspecified domains. An assignment to X will set those domains as well as 
the domain of X. The domain of an individual component of X, however, 
cannot be changed independently of the rest of X, unless that component has 
a flexible type itself (see the examples). A variable declared to have a flexible 
type initially has all flexible domains (of it and its components) initialized to 
the empty domain. A variable may not be declared with an unspecific type. 
Unspecific types are mainly intended, instead, for use in formal parameter 
specifications. 

A domain qualifier is an assertion about the values of domains-either the 
values of domain variables or expressions, or the domains of map variables or 
map expressions. It does not affect type compatibility. It is an error for the 
value of a variable, parameter, or expression to violate the assertion denoted 
by a domain qualifier. 

The presence of the rect qualifier indicates domains (or domains of map 
values) that are rectangular subsets of integer tuples. 

Examples 

18 



let 
FlexTabType = flex [] struct [ 0 integer A; integer B ] .J 

FlexRectType = flex [] [] integer, 
RaggedType = [] flex [] integer J 

FlexRaggedType = flex [] flex [] integer, 
PairRaggedType = [1 .. 2] flex [] integer, 
PartRectType = [1 .. 3J [] integer" 
ARectType = [1 .. 10J [0 .. 9] integer, 
F = proc (ARectType X; ref RaggedType y) ... ; 

FlexRectType Q; 
FlexRaggedType R; 
ARectType S; 

1* RaggedType T; 
1* PartRectType U; 
PairRaggedType V; 

ILLEGAL (unspecific domain) *1 
ILLEGAL (unspecific domain in codomain) *1 

Q : = [ [1, 2 , 3], [7, 8 t 9] J; 
Q := [ [O,lJ, [9,10J J; 
1* Q := [ [0,1], [7,8,9J ]; ILLEGAL ASSIGNMENT (not rectangular) *1 
R : = [ [0 .. 1], [7, 8 , 9] ]; 

7.4 Subprogram Types 

Syntax 

<subprogram type> ::== <explicit subprogram header> 

Semantics 
Explicit headers (see §8.2) supply the names and types of formal pa

rameters to a subprogram literal. When used as types, they match any 
subprogram of the same class taking the same number and equivalent types 
of arguments, and returning an equivalent type. 
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Chapter 8 

Expressions and Statements 

Syntax 

<statement> ::== 

<expression> 
<control statement> 
<assignment> 

<expression> ::= 
<subprogram literal> 

I <expression2> 
expression2 ::== <primary> 

I <prefix operator> <expression2> 
I <expression2> <infix operator> <expression2> 

<primary> ::= 
<number> 
<string literal> 
true 
false 
<identifier> 
proc <operator> 
<subprogram closure> 
<constructor> 
<primary> <postfix operator> 
<indexed expression> 
<control expression> 
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( <expression> ) 
<predefined operator> ::= 

** , (0 I <(0) 

* I / I rem I mod I div I < < 
+1-1(+)/# 
= 1 < I > 1 <= I >= I /= I in 
and I or I not I on 

As given, this grammar is ambiguous; the ambiguity is resolved by priority 
and grouping rules. In the listing above, the priorities of operators listed on 
the same line are identical; those of operators listed on later lines decreases. 
Operators group to the left, except for '**', which groups to the right. 

Semantics 
The primaries true and false denote the logical constant values. 
The primary "proc <operator>" denotes the subprogram denoted by 

the specified operator. (It is used in contexts where, for example, the binary 
function '+' is to be passed as a parameter.) 

The following sections describe the other kinds of expressions and pri
manes. 

8.1 Control Expressions and Statements 

Syntax 

<control expression> ::== 

<if expression> 
begin <block> end 

<control statement> ::= 

<loop statement> 
<exit statement> 

<if expression> ::== 

if <guard> then <block> 
{ elsif <guard> then <block> .«.} 
[ else <block> ] 
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fi 
<guard> ::= 

< logical expression> 
< logical map expression> 

<loop statement> ::= 

[ <loop type> < control clause> ] 
do <block> od 

<loop type> ::= 
for 

I forall 
<control clause> ::= 

[ <control identifiers clause> from] <domain expression> 
[ by < integer vector expression> ) 

<control identifiers clause> ::= 
<identifier> 
'[' { <identifier> ' t' ... } + 'J' 

<block> ::== 
{ <block clause> ';' ... }+ [ ';' ] 

<block clause> ::= 
<constant declaration list> 
<variable declaration> 
<statement> 

<exit statement> ::= 

Semantics 

return [ <expression> ] 
exit 

The terms control expression and control statement generally refer to con
structs whose components are not necessarily evaluated in applicative order. 

An if-expression provides for conditional evaluation; it selects values from 
its constituent blocks depending on the values of its guards. The guards may 
either all be logical expressions, or they may all be maps with identical 
domains and codomain logical. 

When its guards are logical expressions, evaluation of an if-expression 
consists of evaluating the guards in order until they are exhausted or one eval
uates to true. The corresponding block is evaluated and its value becomes 
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the value of the if-expression. If none of the logical expressions evaluates to 
true, the block following else, if any, is evaluated and supplies the value 
of the if-expression. Otherwise, the if-expression has a void value. If the 
expression occurs in a context requiring a non-void value, then all the blocks 
must yield values of the same type, and it is an error for the if-expression to 
yield a void value. 

When its guards are all maps with codomain logical, an if-expression's 
blocks must also be maps whose domains have the same arity as those of its 
guards, and whose codomains must be identicaL The result of evaluating 

if C l then E1 ... elsif Cn then En else Ed fi 

is a map M whose domain is the union of the domains of the C i and whose 
codomain is the same as the Ei . If P is in the domain of M then M[P] is 
computed by 

An else clause is required for these if-expressions. 
Evaluation of a loop statement causes repeated evaluation of the block 

(which is called the loop body.) The loop always yields a void value. In 
the absence of a control clause, a loop iterates until an exit statement is 
evaluated. 

When a control clause is supplied, the loop body is repeated for each 
value it specifies, which are bound in turn to the control identifiers, if present. 
The loop expression declares any control identifiers, whose scope is the loop 
itself. The control clause specifies a (possibly null) domain (a subset of zn 
for some n > 0.) If there is a single, unbracketed identifier, it is bound to 
the elements of this domain in some sequence. When the control identifier 
clause is a bracketed list of identifiers, [iI, ... in], then n must be the arity of 
the domain and for each element, p, of the domain, in some order, the i j are 
bound to p[j] (so that p == [il' ... , in]). 

The control clause determines the domain as follows. The domain ex
pression must have a value, D, of type domain En] for some n (compatible 
with the control identifiers clause.) The array expression following the key
word by, if present, must have a value, S, of type [1 .. n] integer or, if 
n = 1, of type integer (which we'll treat as a one-element array in what 
follows). The elements of S must all be positive. If this array expression is 
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not present, S defaults to an array whose elements are all 1. Informally, the 
array expression specifies a step size for each of the indices of the domain. 
More rigorously, the domain specified by the control clause is given by the 
following expression. 

D * shift (inject(project( shift ( D), S), S), lwb( D)) 

If the loop type is for, then the iterations of the loop body happen se
quentially. If the domain expression is a rectangular domain constructor, 
its elements are enumerated in lexicographic order (last index varying most 
rapidly in increasing order). Otherwise, no order is guaranteed. When the 
loop type is forall, the iterations of the loop proceed collaterally (possibly in 
parallel.) Nothing can be guaranteed about the effects of multiple iterations 
writing to the same variable1 or in general about the order of any side-effects. 

Evaluation of a block causes the evaluation of its constituent statements 
in order. This evaluation may be interrupted by the evaluation of an exit 
statement. The value of a block is that of its last clause (or void if the last 
clause is a declaration.) A block is a defining scope. 

Exit statements provide means of leaving a loop or subprogram body. 
Evaluating an exit terminates the innermost enclosing loop expression. Eval
uating a return terminates the evaluation of the innermost dynamically en
closing subprogram body, yielding the value of the given expression, which 
must be of the type returned by the subprogram, as the value of that body. 
No expression may be supplied for a procedure (a subprogram with a void 
value.) An exit statement may not cause exit from a forall loop. 

Examples 

for [1 .. N] do Sod; 1* Repeat S N times. *1 

for i from [1 .. N] do S := A[i] + Sad; 
1* Add elements 1 to N of A to S. *1 

for [i,jJ from [1 .. N t 1 .. N] do M := max(M,A[i,j]) ad; 
for p from domainOf(A) do M := max(M,A[p]) od; 

1* Find the maximum of all elements in A (two ways). *1 

24 



for [i,j] from [0 .. N, 0 .. N] by [l,2J do Sod; 
1* Repeat S for [iljJ at [OIOJ t [1,2J J ••• J [1,0], [1 1 2J J ••• *1 

8.2 Subprogram Literals 

Syntax 

<subprogram literal> ::== 
[ <pragma> ] <subprogram header> : <subprogram body> 

<subprogram header> ::== proc [ ( { <formal> ';' ... } + ) ] -> <type> 
I proc ( { <formal> ';' ... }+ ) 

<generic subprogram literal> ::== 
generic ( { <identifier> ' t' ... } + ) <subprogram literal> 

<formal> ::== 
( ref] <formal type> { <identifier> ' " ... } + 

<subprogram body> ::== 
<expression> 
external [ <interface clause> ] <identifier> 
forward 

<interface clause> ::== 
'(' <identifier> ')' 

Semantics 
A subprogram literal denotes a subprogram, which, when called, performs 

a computation and may return a value. A subprogram literal is itself a 
defining scope. 

A subprogram generally takes parameters, whose types must be declared 
in the subprogram header. Parameters may be passed either by value-the 
called routine being passed a copy of the argument--or (as indicated by the 
keyword ref) by reference-the formal parameter of the called routine is 
identified with the actual parameter during execution of the calL 

The body of a subprogram indicates the computation to be performed 
or the object to be returned. When the body is an expression, its type 
must be assignment compatible with that of any return type specified for the 
subprogram. For a selector, that part of the expression denoting its value 
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must have the form of an object denotation, and the type of the denoted 
object must be equivalent to that specified as the return type. 

When the body of a subprogram is the clause external P, and the sub
program is used in a program, the subprogram identifier P must must be 
declared with an expression as body elsewhere in the compilation or must be 
exported with an expression as body from some compilation in that program. 
The type of P must be that indicated by the header. For external BU bpro
grams written in languages other than FIDIL ("foreign" subprograms), the 
interface clause indicates the language (and thus any necessary calling con
ventions or parameter conversions). 

Subprogram literals whose body is the keyword forward may only ap
pear as the expression in a constant declaration. If the constant declaration 
in which it appears is used in the compilation, then there must be a corre
sponding complete constant declaration in the same defining scope, with the 
same identifier, and in which the expression is again a subprogram literal 
with the same type. There may be more than one incomplete declaration for 
a given complete declaration, and each incomplete declaration may appear 
either before or after the corresponding complete declaration. 

A generic subprogram literal does not directly denote a subprogram, but 
is rather a template for subprogram literals. The identifiers, called generic 
formals, in the list following the keyword generic may stand for types or for 
the integer constants that appear in unspecific map type specifiers. In effect, 
a generic subprogram literal stands for all possible subprograms obtainable 
by substituting types or integers for these identifiers. The body of a generic 
subprogram literal is not translated-and therefore not checked for legality
at the time it is initially encountered. Indeed, it can't be, since the types of its 
arguments, and therefore the meanings of subprogram calls within its body, 
are unknown. Only when an actual call is resolved to the generic subprogram 
does the substitution of actual types for the generic formals take place, and 
only then is the resulting body checked for semantic consistency. 

The scope of the generic formals is the entire subprogram literal that 
follows them. They are not hidden by any inner declarations; it is illegal 
to declare quantities with the same names as the generic formals within the 
subprogram literal. 
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8.3 Subprogram Calls and Partial Closures 

Syntax 

<subprogram closure> ::= 

<procedure primary> '(' { <closure argument> ' " ... }+ ')' 
<closure argument> ::= 

<expression> 
'?' 

Semantics 
A subprogram closure first causes evaluation of any arguments. If all 

arguments to the function are present, then execution continues with execu
tion of the body of the subprogram designated by the procedure primary. In 
this case, the closure is called a call. If r > 0 arguments are missing (that is, 
are left null, with the surrounding commas left in,) then the closure is called 
a partial closure of the designated subprogram. The value of this partial 
closure is itself a subprogram taking r arguments. At least one argument 
must be supplied in a partial closure. When this partial closure's value is 
itself called with r arguments~ the result is as if those argument values were 
inserted for the arguments missing from the closure and the result treated as 
an ordinary call. 

A subprogram with no arguments must have a void value (it is executed 
for its side-effects alone.) To be called, this subprogram's designator must 
be followed by empty parentheses. 

The order in which argument expressions are evaluated is undefined. 

8.4 Constructors 

Syntax 

<constructor> ::= 
<map constructor> 
<record constructor> 
<rectangular domain constructor> 

<map constructor> ::= 
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'[' [ '*' <integer literal> ':' ] { <expression> ' " ... } + ']' 
'[' <control clause> : <expression> ']' 

<record constructor> :: = 
< record type identifier> '(' { <expression> ' " ... } + ')' 

<rectangular domain constructor> ::= 
'[' { <dimension> ',' ... }+ ']' 

<dimension> ::= 

< integer expression> .. < integer expression> 

Semantics 
Constructors are expressions that build composite objects. The compo

nents specified by the expressions must conform in type and number to the 
components indicated by this type. Both maps and records may be speci
fied extensionally-as a list of expressions. The nth component expression 
corresponds to the nth field of the record or to a first index of n for a map. 
The optional '*n:' at the beginning of a map constructor is used to indicate 
the arity of the map; it defaults to one. In an extensional map constructor 
for a map of arity n > 1, each component expressions must itself represent a 
map of arity n 1 (except that the '*n :' is unnecessary, and indeed ignored, 
for these component expressions). The most deeply-nested expressions cor
respond to the first index. For example, 

let 
C = [*2: [1,2], [3,4], [St 6] ], 

1* C is of type [*2] integer. *1 
1* C[[1,1]] = 1, C[[2,1]] = 2, C[[l,2]] = 3, etc. *1 

Q = [ [1 t 2]) [3, 4] J [5 J 6] ]; 
1* Q is of type [*1] [*1] integer. *1 
1* Q[1] [1] = 1, Q[1] [2J = 2, etc. *1 

A map constructor may also specify a rule (the second form given in the 
syntax.) The control clause (see §8.1) then specifies the domain of the map. 
For each item of the domain, the expression is evaluated to give the image 
of that value. If the control clause specifies control identifiers, these may be 
used in the expression. Evaluation is as for foraH: no order is specified and 
the elements may, in fact, be evaluated in parallel. 

A record constructor for a record type, R, whose fields have types Ti may 
also be applied to arguments whose types are [D] Ti for some (common) 
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domain D. The result is of type [D]R; its fields' values at a given domain 
point are those of the arguments at that point. Likewise, such a record 
constructor may also be applied to arguments of type [Dr] [D'2] T with result 
of type [Dl:l [D21 R, and so forth. 

The domain constructor yields a domain consisting of all tuples of integers 
such that each integer is in the range denoted by the corresponding element 
of the dimension list. 

Examples 

[ [1 .. 10J : 0 ] 
1* The constant 0 map on the domain 1 .. 10. *1 

[ i from [1 .. 10] : i J 
1* The identity map on the domain 1 .. 10 *1 

8.5 Indexing 

Syntax 

<indexed expression> ::= 

<map primary> { <indexer> ... } + 
<indexer> ::= 

'[' { [ <expression> ] , " ... } 'J' 

Semantics 
The notation "A[al,'" ,an]" is equivalent to "A[al]'" [an]." In the fol

lowing discussion, we assume the latter form. 
Indexing a map produces the value or (assignable) object in the codomain 

of a map corresponding to a given element of the domain. The expressions 
may be integers, in which case the domain value is the tuple consisting of 
those integers, or there may be a single expression in the domain of the map. 
It is an error if the index is not in the current domain of the map. 

An expression E of the form 

A [ ] ... [ :I [in] , 
'--..--' 

n 
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is a selector denoting a map object with the property that 

E[io]' .. [in-I] = A[iaJ ... [in] 

(i.e., these two expressions denote the same variable; taking their value or 
assigning to them have identical results.) 

8.6 Assignment 

Syntax 

<assignment> ::= 
<left side> : = <right side> 
<left side> *: = <right side> 

<left side> ::= 

<object expression> 
( { < object expression> ' t' ... } + ) 

<right side> ::= 
<expression> 
( { <expression> ' j' ... } ) 

Semantics 
An < object expression> in the syntax above refers to an expression that 

designates an (assignable) object (a variable, indexed expression, or selector 
call). An assignment may be to one or to several such objects simultaneously. 
In the latter case, the right side may be either a single, record-valued or map
valued expression-whose components are assigned in order to the objects 
on the left side-or a parenthesized list of values. There must be identical 
numbers of values to be assigned as objects to receive them. 

The': =' operator assigns an entire object of any type. The types of the 
right-side entities must be assignment compatible with those of the corre
sponding left-side objects. A flexible map object may receive a map value 
with any domain of the appropriate arity. A non-flexible map object may 
only receive maps with identical domains. These rules apply recursively to 
the elements of the codomain. 

The '*: =' operator applies only to maps. The rules governing it are the 
same as for ': =' , except that it assigns values from the right side( s) only at 
points in the intersection of the domains of the left and right sides. 
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8.7 Standard :Functions and Operators 

Tables 8.1 and 8.2 give the standard operators and functions on domains. 
Tables 8.3-8.6 give the standard operators and functions on maps. Tables 8.7 
and 8.8 give the standard arithmetic and mathematical operators. 
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Expression 

nullDomain( n) 

pin D 

lwb(D) 
upb(D) 

arity(D) 
sizeOf(D) 
shift(D, S), D « S 

shift (D) 

inject(D, S) 

project( D, S) 

expand ( D, S) 

contract ( E , S) 

Meaning 
The empty domain of type domain[n]. The quan
tity n must be a compile-time integer constant. 
Union of Dl and D2 • 

Intersection of Dl and D 2 • 

Set difference of Dl and D2 • 

where D is a domain of arity nand p is an array 
of type valtype(D): a logical expression that is 
true iff p is a member of D. 
For a domain of arity n: An integer map with 
domain [l..n] (for n = 1, an integer) whose kth 

component is the minimum (lwb) or maximum 
(upb) value of of the kth component of the ele
ments of D. 
yields n for a domain of arity n. 
The cardinali ty of D. 
Where S is of type valtype(D) and n is the arity 
of D: The domain {d + Sid in D}. 
Same as shift(D, -lwb(D)). 

The domain {d*Sld in D}. 

The domain {d0 Sid in D}, where '0' denotes el
ementwise integer division, rounding toward -00. 

The domain {ele 0 S in D}. 

The domain D such that E = expand( D, S), if it 
exists. 

Table 8.1: Operators and functions on domains, part 1. 
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Expression 

accrete(D) 

boundary(D) 
reduce(D, S) 

Meaning 

The set of points that are within a distance 1 in 
all coordinates from some point of D. 
accrete(D) - D. 
where D is a domain of arity nand S =::; 

[it, ... ,ir],l ~ i 1 < ... < ir ~ n. The result is 
the domain of arity n - r consisting of all (n - r )
tuples 

[j}, ... ,ji1-bji1+h"'] such that [ill'" ,jn] E 
D. 

Table 8.2: Operators and functions on domains, part 2. 
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Expression 

domainOf( X) 

toDomain( X) 

image(X) 

upb(X) 
Iwb(X) 
arity(X) 
X#Y 

shift(X, S), 
X« S 
shift(X) 

Meaning 

The domain of map X. This may also appear in a left
hand side context if X is a partial map variable. The 
result of an assignment to the domain of X is a map 
whose initial image consists of undefined values. 
w here X is a logical map: 

{p E domainOf(X)\X[PJ}. 
where X is a map whose codomain is an integer map of 
arity n: the domain of dimension n whose elements are 
all elements in the image of X-that is, the set {d\X[P] == 
d, for some pl. 
upb( dornainOf(X)) 
lwb( domainOf( X)) 
arity( domainOf(X)) 
The composition of X and Y. X and Yare maps; 
Y's codomain must be valtype(domainOf(X)); and 
image CY) must be a subset of domain Of (X). 

X # Y is a map object (which is assignable if X is 
assignable) such that 

(X #Y)[P] = X[Y(p]]. 
Hence, its domain is domainOf (Y) . 

where S is a [l..n] integer (an integer for n == 1), with 
default value -lwb(X), and n is the arity of X: the map 

X # [p from domainOf (X): p-SJ. 

inject(X, S) X # [p from inject (domainof(X) , S): pIS]. 

project (X, S) X # [p from project (domainOf(X) J S): S*pJ. 

contract(X, S) [p in expand ( [0 .. 0 I ••• , 0 .. 0], S) 
[project(X « -p, S)]. 

expand(X, S) Produces a map defined by the relation 
expand (contract ex, S) ,S) = X. 

Table 8.3: Operators and functions on maps) part 1. 
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Expression 

XonD 
X(+)Y 

eoncat( Et , .. - ,En) 

Meaning 

The map X restricted to domain D. 
where domainOf(X) n domainOf(Y) == {}: the 
union of the graphs of X and Y, whose codomains 
must be identical and whose domains must be of 
identical arity. 
Concatenation of E 1 , •. _, E2 - The Ei must be 1-
dimensional maps with contiguous domains and 
some (common) codomain T, or values of type T, 
whieh are treated as one-element maps with lower 
bound O. At least one of the Ei must be a map on 
T. The result has the same lower bound as E1 and 
an upper bound equal to the sum of the lengths of 
the Ei . 

Assuming that F takes arguments of type Ti and 
returns a result of type T, F<D is a function extend
ing F to arguments of type [Di] Ti , where the Di 
are domains of the same arity, and returns a result 
of type [D] T, where D is the intersection of the Di . 

The result of applying this function is the result of 
applying F pointwise to the elements correspond
ing to the intersection of the argument domains. 

For F as above returning type T1 : The extension of 
F to arguments of types (Di]T as above, returning 
a value of type [D1]T1 defined by 

F< @ >(xt,. - ., xn) 
== F@(Xl,""Xn ) (+) (Xl on (D t - D)). 

Table 8.4: Operators and functions on maps, part 2. 
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Expression 

compress (X) 

compress(X, W) 

decompress(X, W) 

reduce(X, j, S, vo) 

reduce( X, j, vo) 

Meaning 

where X is a map on a domain of arity 1: The 
one-dimensional map, X' with a contiguous domain 
having a lower bound of 1 such that X'[i] is the 
value of X(Pi], for Pi the ith smallest element in the 
domain of X. 

where W is a one-dimensional map whose codomain 
is logical: compress( X on toDomain( W) ). 

The map X' such that 
compress(X', W) = compress(X). 

where X is a map of arity n and codomain C; 
S = [it, ... , ir J, 1 :::; i l < ... < ir ~ n; and f is 
a function taking two arguments, one of some type 
R, the second of type C, yielding a result of type R. 
The result, B, is of type T = [*(n - r)]R, or T = R 
if n = r, and has domain reduce(domainOf(X),S). 
Its values are defined as follows. 

B[jl,'" ,ji1-l,jil+I, ... ] 
= f(f(·· . f( vo, vt)" .. ), vm ). where the Vi are 

the elements 
X[j}, ... ,jiI-I, k,jil+1, ... J 

for all k for which the expression is defined, taken 
in some undefined order. 
where X is any map with codomain C; Vo is of some 
type R; and f is as above. The result is of type R 
and has the value Vo if the domain of X is empty, 
and otherwise 

f(f(··· f(va, Vl)," .), vm ) 

where the Vi, i > 0 are the elements of X is some 
undefined order. 

Table 8.5: Operators and functions on maps, part 3. 
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Expression 

sort(X, P) 

trace(A, S) 
outerproduct(A, B) 

transpose(X[,7r]) 

flip(X, 7r) 

flip(X) 

remap(X) 

remap(Y, m) 

Meaning 

where X is a contiguous, one-dimensional map with 
codomain T and P is logical-valued binary function 
with arguments of type T: the map X' with the 
same domain as X that results from permuting the 
image of X so that i < j implies P(X'[i], X'[jD. 
The permutation is strict: the order of image el
ements x and y such that P(x, y) and P(y, x) is 
unchanged by the sort. 
reduce(A,proc +, S, 0) 
where A and B are maps with rectangular domains 
of dimensions na and nb and the same codomains: 
The map C defined as follows. 

C[i1 , ••• , ina,j!,'" ,jnb] == 
A[il' ... , i n a1*B[jt, ... ,jnbJ 

where 7r == [1rl, ... , 1rn] is a permutation of the in
tegers between 1 and n, and n is the arity of the 
map X: The object, X', resulting from transpos
ing the indices of X according to 1(". Specifically, 
X' [i1fl , ... , i7!"nl == X[il'" ., in]. The default for 7r is 
[2,lJ. 
where X is of type [Dd ... [Dn] T: The map, XI 
defined by the following. 

X'[P1rl]'" [P7!"rJ == X[Pl]'" [PnJ. 
The default for 7r is [2,1]. 
where X is a record of maps with identical domains: 
produces the map taking p in the common domain 
to the record with field values FdpJ, where the Fi 
are the fields of X. X can also be a map of records, 
in which case flip performs the inverse operation. 
The object resulting from "reassociating" the in
dices of X, which must be of type [*m] [*n] T to 
form an isomorphic object, Y of type [*m + nJ T. 
If p is a valid index of X and q is a valid index of 
X [p], then Y [concat (p, q)] = X [p] [q]. 
If X, Y, and m are as above, then remap(Y, m)=X. 
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Expression 

+, -, *, /, ** 
rem, mod, div 

<, >, <=, >=, =, /= 

and, or, not 

Meaning 

For scalar arguments, the standard arithmetic 
operators. The division operator, 'I', produces a 
long real result when its operands are integers. 
The binary operator div applies to integers, pro
ducing the quotient of its operands truncated 
to an integer. The rem operator is defined 
by the formula x == (x div y)*y + (x rem V), 
for y f=. O. The mod operator is defined by 
x mod y == x - y lx/yJ , for y =F O. The same 
conversion rules apply as for FORTRAN. 
When applied to maps of the same arity and 
codomain, these operators apply pointwise, pro
ducing a map whose domain is the intersection 
of the domains of operands. Finally, the oper
ators are also overloaded to allow one operand 
to be of a scalar type T and the other to be a 
map whose codomain has a type that the oper
ator can legally combine with type T. In this 
case, the operand of type T is treated as a con
stant map with the same domain as the other 
operand. This latter definition is recursive; for 
example, the codomain of the map operand may 
itself be a map. 
Relational operators (/ = is "not equaL") These 
operators also extend to maps as for the arith
metic operators. 

The standard logical connectives. These also 
extend to maps of scalars. 

Table 8.7: Arithmetic Operators and Elementary Functions, part L 
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Expression 

exp(x), In(x), loglO(x) 
sin(x), cos(x), tan(x) 
sqrt(x) 
atan{x), atan(x,y) 

abs( I) 

floor ( x), trunc{ x), 
round(x), 
toSingle( x ), 

toLong(x), 
tolnt{x) 

max(xt, ... , In) 
rnin(Xl" .. , Xn) 

signum(X) 

reaIPart(Z), 
imagPart( Z) 

Meaning 

The standard elementary mathematical functions. 
They are defined on real and complex quantities, 
yielding results of the same type. 

Absolute value. For real and complex quantities, 
yields a real value of the same length, otherwise an 
integer. 
Scalar coercions. Floor, trunc, and round apply to 
reals, producing results rounded toward - inf, to
ward 0, and toward nearest. The functions, toInt, 
toSingle, and toLong apply to all types, converting 
to the nearest integer, single-length real (complex), 
or long real (complex) quantity. The last three op
erations also act on logical values, converting true 
to 1 or 1.0 and false to 0 or 0.0. 
Maximum and minimum. All operands must be of 
the same type-----an integer or real type. 

Returns the integer -1, 0, or 1, depending on 
whether X (which may be an integral or real) is 
negative, zero, or positive. 
Real and imaginary parts of the complex quantity 
Z. Either of type real or long real, depending on 
the the type of Z. 

Table 8.8: Arithmetic Operators and Elementary Functions, part 2. 
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Chapter 9 

Pragmas 

A pragma is an "escape clause" allowing the programmer to give the trans
lator advice or other directives that have no semantic effect or that do not 
fit naturally into the rest of the language. 

Syntax 

<pragma> ::= '(*' { <pragma expression> 'J' ... }+ '*)' 

Semantics 
The possible pragma expressions are given in Table 9.1. The interpreta

tion of a pragma. expression depends on the particular pragma; it need not 
follow the usual strictures of FIDIL semantics. 

Expression I 
inline 

Meaning 

Indicates that calls on the subprogram literal to 
which this pragma is attached should be open
coded (that is, each call should be replaced by a 
suitably-modified copy of the body). 

Table 9.1: Pragmas. 
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<,37 
<==, 37 
<<<1>,34 
>,37 
>==, 37 
*, 37 
*,31 
**,37 
+,31,37 
-, 31, 37 
/,37 
/=,37 
=,37 
?,26 
<0,34 
#,33 

abs, 38 
accrete, 32 
ambiguity, 11-12 
and keyword, 20 
and operator, 37 
arity, 16 
arity function, 31, 33 
assignment 

syntax, 29 
atan, 38 

backslash (\), 5 
basi c scalar type 
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syntax, 15 
begin keyword, 20 
block 

syntax, 21 
block clause 

syntax, 21 
BNF Notation, 3 
boundary, 32 
by keyword, 21,22 

char keyword, 5, 15 
closure, 26 
closure argument 

syntax, 26 
comments, 5 
compilation, 6 

syntax, 6 
compilation item 

syntax, 6 
complete declaration, 10 
complex keyword, 15 
compress, 35 
concat, 34 
constant declaration 

syntax, 9 
constant declaration list 

syntax, 9 
constant declarations, 10 
constructor 

syntax, 26 



contract, 31, 33 
control clause 

syntax, 21 
control expression 

syntax, 20 
control identifiers clause 

syntax, 21 
control statement 

syntax, 20 
cos, 38 

decompress, 35 
defining scope, 9, 23, 24 
dimension 

syntax, 27 
div keyword, 20 
div operator, 37 
do keyword, 21 
domain keyword, 16 
domain qualifier, 17 

syntax, 16 
domain type 

syntax, 16 
domainOf,33 

else keyword, 21 
elsif keyword, 20 
end keyword, 20 
exit keyword, 21, 23 
exi t statement 

syntax, 21 
exp, 38 
expand, 31, 33 
explicit header 

syntax, 24 
exponent 

syntax, 4 
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export keyword, 6 
exported declaration, 7 
exports keyword clause, 6 
expreSSIon 

syntax, 19 
extent, 10 
external keyword, 6,24,25 
external declaration, 6, 10, 25 

false keyword, 19, 20 
fi keyword, 21 
field group 

syntax, 15 
flex keyword, 16, 17 
flip, 36 
floor, 38 
for keyword, 21, 23 
forall keyword, 21, 23, 27 
foreign subprogram interfaces, 25 
formal 

syntax, 24 
forward keyword, 24, 25 
forward declaration, 10, 25 
from keyword, 21 

generic keyword, 24 
generic formal, 25 
generic subprogram literal 

syntax, 24 
guard 

syntax, 20 

header files, 8 

identifiers 
syntax, 4 

if keyword, 20 
if expression 



syntax, 20 
image, 33 
imaginary numbers, 5 
in keyword, 20 
in operator, 31 
#incl ude directive, 6, 8 
incomplete declaration, 10, 25 
indexed expression 

syntax, 28 
indexer 

syntax, 28 
inject, 31, 33 
inline procedures, 39 
instance, 10 
integer keyword, 15 
integer Ii teral 

syntax, 4 
interface clause, 25 

syntax, 24 

left side 
syntax, 29 

let keyword, 9, 11 
In, 38 
loglO, 38 
logical keyword, 15 
long keyword, 15 
loop statement 

syntax, 20 
loop type 

syntax, 20 
lwb, 31, 33 

main procedure, 7 
map constructor 

syntax, 26 
map type 
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syntax, 16 

max, 38 
min, 38 
mod keyword, 20 
mod operator, 37 

not keyword, 20 
not operator, 37 
nullDomain function, 31 
number 

syntax, 4 
numeric literals, 4 

od keyword, 21 
on keyword, 20, 34 
on operator, 34 
opaque declaration, 10 
operator 

syntax, 12 
operator keyword, 12 
operator character 

syntax, 12 
operator declaration 

syntax, 12 
or keyword, 20 
or operator, 37 
other operator 

syntax, 12 
outer constant declaration 

syntax, 9 
outer constant declaration list 

syntax, 9 
outer declaration, 6 

syntax, 6 
outerproduct, 36 
overloading, 11-12 

postfix keyword, 12 



pragma 
syntax, 39 

pree keyword, 12 
predefined operator 

syntax, 19 
preprocessor, 8 
primary 

syntax, 19 
proe keyword, 19, 20, 24 
program, 6 
project, 31, 33 

real keyword, 15 
real literal 

syntax, 4 
record constructor 

syntax, 27 
record type 

syntax, 15 
reet keyword, 16, 17 
rectangular domain constructor 

syntax, 27 
reduce, 35 
ref keyword, 24 
rem keyword, 20 
rem operator, 37 
remap, 36 
return keyword, 21, 23 
right side 

syntax, 29 
round, 38 

scope, 9, 23, 24 
defining, 9 
of outer declaration, 6 

shift, 31, 33 
sign 
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syntax, 4 
signum, 38 
sin, 38 
sizeOf function, 31 
sort, 36 
specific map domain 

syntax, 16 
sqrt, 38 
statement 

syntax, 19 
string literal 

syntax, 5 
string literal character 

syntax, 5 
string literals 

syntax, 5 
struct keyword, 15 
su bprogram body 

syntax, 24 
subprogram closure, 26 

syntax, 26 
subprogram hea.der 

syntax, 24 
subprogram literal 

syntax, 24 
subprogram type 

syntax, 18 

tan, 38 
then keyword, 20 
toDomain, 33 
toInt, 38 
toLong, 38 
toSingle, 38 
trace, 36 
transparent declaration, 10 
transpose, 36 



true keyword, 19, 20 
trunc, 38 
type 

syntax, 14 
type keyword, 9 
type declaration, 11 

syntax, 9 
types 

definition, 11 

unspecific map domain 
syntax, 16 

upb, 31, 33 

valtype keyword, 16, 17 
variable declaration 

syntax, 9 
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