
{3. 1.1

FIDIL Reference Manual

Paul N. Hilfinger Phillip Colella

Report No. UCB/CSD-93-759

2 May 1993

Computer Science Division (EECS)
University of California
Berkeley, California 94720

FIDIL Reference Manual 1

Paul N. Hilfinger Phillip Colella

2 May 1993

IThis work funded by NSF (DARPA) grant DMS-8919074.

Contents

1 Introduction

2 Notation

3 Lexical Details

4 Basic Program Structure

5 Preprocessing

6 Declarations
6.1 Resolving ambiguity
6.2 Subprogram and Operator Declarations ..

7 Data Types and Type Constructors
7.1 Basic Scalar Types
7.2 Record Types
7.3 Map and Domain Types
7.4 Subprogram Types

8 Expressions and Statements
8.1 Control Expressions and Statements ..
8.2 Subprogram Literals
8.3 Subprogram Calls and Partial Closures
8.4 Constructors ..
8.5 Indexing
8.6 Assignment
8.7 Standard Functions and Operators

1

3

4

5

7

9

10
12
13

15
16
16
17
19

20
21
25
27
27
29
30
31

9 Pragmas 40

2

Chapter 1

Introduction

FIDIL (for FInite DIfference Language) is a language supporting finite differ
ence and particle method computations. It extends the semantic domain of
FORTRAN-like algebraic languages with facilities for construction, composi
tion, refinement, and other manipulation of grids-called domains-and for
performing computations on functions defined over these domains. FIDIL is
an attempt to automate much of the routine bookkeeping that forms a large
part of many programs involving PDEs, and to bring the semantic level of
these programs closer to that at which the algorithms are conceived and
published.

This report gives the current definition of the FIDIL language. We expect
the definition to evolve rapidly with experience.

3

Chapter 2

Notation

In BNF syntactic descriptions, a construct of the form "{C .. . }" indicates
o or more instances of the C. A construct of the form "{ C (7 ••• }," where
(J' is a punctuation mark, indicates 0 or more instances of C separated by ()"
characters. A superscripted '+' after the closing brace indicates 1 or more
instead of 0 or more. A construct surrounded by square brackets (I:]) indicates
o or 1 instances of the construct. A list of BNF clauses separated by vertical
bars (I) denote alternatives. Set braces, square brackets, vertical bars, and
other meta-syntactic marks that are intended as terminal symbols in the
grammar are surrounded by single quotes (e.g., '[' and ']'). Other terminal
symbols may also be placed in single quotes, as clarity dictates.

Non-terminal symbols appear within angle brackets «». Parts of the
symbol that appear in slanted type are comments for syntactic purposes, but
may have semantic significance. For example, "< infix operator>" is syntac
tically any operator, but must also appear within the scope of a declaration
for that operator as an infix operator. Certain non-terminals are not defined;
their definitions (which may be context-sensiti ve) are implied by their names.

4

Chapter 3

Lexical Details

FIDIL source text is genera.lly free-form. Blanks or punctuation must delimit
each end of all keywords, identifiers, and numbers, and may not appear within
them. Blanks or non-operator characters (see below) must delimit each end
of all operators, and may not appear within them. Beginnings and ends
of lines, comments, and tabs all count as blanks outside of string literals.
Blanks are insignificant except as delimiters or characters in string literals.
Keywords, which in the rest of this document are indicated by bold face type,
are reserved.

Identifiers have the following, fairly conventional, syntax.

<identifier> ;:= <letter> { <letter or digit> ... }
<letter> ::=

'a' I ... / 'z' I 'A' I ... / 'Z' I '-'
<digit> ::=

'0' 1 ... / '9'

Identifiers may be of any length. The cases of letters composing the identifier
are significant; for example the identifier 'x' is distinct from 'X'.

Numeric literals are formed according to the following syntax.

<number> ::=
<integer literal> ['i']
<real literal> ['i']

<integer literal> ::=
{ <digit> ... }+

5

<real literal> ::==
<integer literal> <exponent>
<integer literal> ' .' [<integer literal> [<exponent>]]
, .' <integer literal> [<exponent>]

<sign> ::== '+' I '-'
<exponent> ::=

E [[<sign>] <integer literal>]
D [[<sign>] <integer literal>]

The letter 'i' appended to a number (without intervening blanks) indicates
a purely imaginary quantity. The letter 'D' in the exponent of a real literal
indicates a long real quantity and 'E' denotes a short real quantity. In the
absence of such an indication, 'D' is assumed. All of the letters 'i', 'E', and
'D' in these contexts may appear in either case. When the integer literal
in an exponent is missing, it defaults to O. Programmers can specify signed
numbers as expressions involving a numeric literal and a unary minus or plus
operator.

String Ii terals denote arrays of characters (type [1 .. n] char, for n ~
o the number of characters.) They have the following syntax.

<string literal> ::=

'II' { <string literal character> ... } 'tI'
<string literal character> ::=

<any character other than II and end of line>
, \' <any character other than end of line>

Characters following a backslash are interpreted as in C.
Comments begin with '/*' and end with '*/'. They may span any number

of lines. A '/ *' sequence inside a comment is ignored.

6

Chapter 4

Basic Program Structure

Syntax

<compilation> ::== {<compilation item> ';' ... } [, ; ,]
<compilation item> ::==

<outer declaration>
export { <identifier> ' " ... } +

<outer declaration> ::==

Semantics

[external] <variable declaration>
<outer constant declaration list>
<type declaration>
<operator declaration>

A compilation is a collection of declarations of variables, subprograms,
and other constants, together with directives for linking together declarations
in separately processed compilations. A program is a collection of one or more
compilations that is sufficiently complete to execute.

Each outer declaration has a scope that begins at the defining instance of
the entity declared and continues to the end of the compilation. The exports
clause extends the scope of the declaration of any identifier listed to other
compilations that reference the identifier in external declarations. Types may
not be exported (but the #include preprocessor directive can give the effect
of exporting and importing types.) An external declaration is either a vari
able declaration prefixed by the keyword external or a subprogram constant

7

defined with a literal whose body is external (see §8.2). In any compilation,
there must be exactly one non-external declaration of each identifier in an
exports list (such a declaration is called an exported declaration).

When the compilations forming a program are linked, there must be at
most one exported declaration for any identifier. There must be an exported
declaration for every external variable and for every external subprogram
for which there is a call in one of the compilations. The type and class
(variable or constant) of every external declaration must match that of the
corresponding exported declaration.

Every program (but not every compilation) must contain a distinguished
procedure main. Execution of the program consists of first executing all outer
declarations in order (that is, in textual order within each compilation, with
compilations executed in an order specified to the linker) and then calling
the procedure main.

Examples

export current..parameters J forceJn J nd;

let
force.-in = proc (Position x) -> Force: ... ;
1* Exported function. *1

[1 .. 3J long real current...parameters;
1* Exported variable *1

8

Chapter 5

Preprocessing

It is often useful to be able to group shared definitions in header files that
can be incorporated in other source files without fear of transcription error.
For this purpose, FID 1L uses the same preprocessing as is provided by the
C language. Source lines beginning with the character '#' are assumed to
be preprocessor directives. A directive of the form

#include Itfile-name"

will insert the contents of the named file in place of the directive.

9

Chapter 6

Declarations

Syntax

<outer constant declaration list> ::==

let { <outer constant declaration> ' " ... } +
<constant declaration list> ::==

let { <constant declaration> ' J' ... } +
<constant declaration> ::==

<identifier> = <expression>
'(' { <identifier> ' " ... } + ') 1 = <expression>
<operator> = <subprogram expression>

<outer constant declaration> ::==

< constant declaration>
<identifier> = <generic subprogram literal>
<operator> = <generic subprogram literal>

<variable declaration> ::==
<type> { <identifier> ' J' ... } +

<type declaration> ::==
type { <identifier> = <type> , ... } +

Semantics
A scope is a section of program text. Certain program constructs deter

mine a defining scope. For example, the text of a subprogram literal is a
defining scope. The scope of a declaration is the section of program text to
which it applies. It begins at the point of the declaration (i.e., it includes

10

the text of the declaration itself) and continues to the end of the innermost
defining scope in which that declaration appears. The meaning of a given
instance of an identifier or operator is governed by the declarations in whose
scope it appears. When more than one declaration is present, the one that
applies is determined by the rules for resolving ambiguity in §6.1.

Some declarations do not themselves indicate the creation of a declared
entity, but rather make reference to another declaration that appears else
where for the purpose of enlarging that declaration's scope. We refer to such
definitions collectively as incomplete declarations, and all others as complete
declarations. The external declarations form one kind of incomplete declara
tions. The other kind is the forward declaration, described in §8.2. External
declarations may be used to extend the scope of a declaration in one com pi
lation to another compilation. Forward declarations may be used to extend
the scope of a subprogram backwards from its complete definition so as to
permit mutual recursion. They may also be used for documentation. It is not
necessary that there be a complete declaration corresponding to a given in
complete declaration if the entity created by the definition is never referenced
in the text of a compilation.

Each execution of a complete declaration creates an instance of the de
clared entity (a variable, type, or constant). Likewise, every execution of
the text forming a defining scope creates an instance of that defining scope,
which vanishes when that execution of the defining scope completes. The
extent of an instance of a declaration is the period of execution time during
which that instance exists. This extends from the execution of the decla
ration itself until exit from the instance of the defining scope during which
the declaration was executed. Outer declarations each have a single instance
whose extent ends only upon termination of the entire program.

Constant declarations define identifiers and operators to the left of the
equals (=) signs to denote the values (subprograms are also values) to the right
of the equals signs. Values are computed when the declaration is executed.
When the defining expression is a composite object (a map or record), the
left side may be a list of identifiers in parentheses, which are ascribed the
values of the components of the defining expression according to position.
There must be exactly as many identifiers as components.

The declarations in a constant declaration list may either be opaque or
transparent, depending on the defining expression. A declaration whose defin
ing expression is a subprogram literal is transparent; all others are opaque.

11

Informally, opaque declarations hide previous declarations of the same iden
tifiers, while transparent declarations introduce possible interpretations of
identifiers without hiding previous ones. Variable declarations and formal
parameter declarations are also opaque. §6.1 defines these terms more pre
cisely.

A type declaration defines one or more identifiers to denote types. Type
declarations are opaque. §7 describes the possible definitions for such iden
tifiers.

Examples

let
nd = 3, 1* Simple scalar *1
Force = [1 .. nd] long real J 1* Type *1
(xO, xl, x2) = V; 1* Where V is a vector dimensioned 1 .. 3 *1

6.1 Resolving ambiguity

When an instance of an identifier appears in the scope of more than one dec
laration of that identifier, there are two ways of resolving the resulting ambi
guity. First, certain declarations hide previous ones due to opacity. Second,
the type-consistency rules (which govern, for example, the required types for
subprogram parameters) restrict the set of admissible interpretations of an
instance.

An opaque declaration of an identifier (as defined in §6) hides any pre
ceding declaration of that identifier throughout the scope of the opaque dec
laration. As an aid to catching certain kinds of error, an opaque declaration
may not hide a declaration in the same defining scope.

After considering opacity, there may still be multiple declarations covering
a particular instance-in which case the declared identifier or operator is said
to be overloaded. A choice of declarations for all the instances in an expression
is called an interpretation. An interpretation is legal if it obeys the type rules
of the language (e.g., the rule that an actual parameter of a function must
have the type indicated by the corresponding formal parameter). There must
be at least one legal interpretation, and the set of legal interpretations must
be such that the types of the expression and all of its subexpressions are

12

uniquely determined. The interpretation chosen is the one that applies the
first applicable declaration in order of appearance to each instance.

6.2 Subprogram and Operator Declarations

Syntax

<operator> ::==
<predefined operator>
<other operator>

<other operator> ::==

<identifier>
<operator character> [<operator character> [<operator character>]]
'(' <operator character> [<operator character>] ')'

<operator character> ::==

'*' I 'I' I '+' I '-' 1 '<' I '>' I '='
'(0' I 'I' I 'Ye' I '1'1 '&' I ,-, I , ... ,

<operator declaration> ::==

Semantics

prec <predefined operator> operator { <other operator> ",' ... } + ;
postfix operator { <other operator> 1 ••• } + ;

An ordinary subprogram is declared by a constant declaration whose
right-hand side is a subprogram literal. A subprogram's designator may
be an operator, in which case calls on the subprogram take the form of ex
pressions in which the designator acts as a prefix, infix (binary), or postfix
operator. Prefix and postfix operators must be declared with one argument;
infix (binary) operators must be declared with two. Declarations of oper
ators as infix versus prefix operators are distinguished by the numbers of
arguments. When an identifier is an operator, it is reserved for use as an
operator only. In a given compilation, an operator may be overloaded to be
both an infix and a prefix operator but no other combination is allowed.

Any 'other operator' used in a program must be declared in an operator
declaration before its first appearance in either an expression or a subpro
gram designator spec. All such operators are left associative and have the
same precedence as the predefined operator that appears in their operator

13

declaration. An operator may appear in any number of operator declarations
within a single compilation, but must be given the same precedence in each.
All postfix operators have the highest precedence.

14

Chapter 7

Data Types and Type
Constructors

Syntax

<type> ::=

Semantics

<user-defined type identifier>
<basic scalar type>
<record type>
<domain type>
<map type>
<subprogram type>

FIDIL supports several classes of data type, and allows the programmer to
define new types within some of those classes. The following sections describe
the type denotations. Identifiers defined to be types may be used where type
names are allowed (e.g., to define variables or the types of parameters.)

In several places, we will refer to two types as being equivalent. A type
is always equivalent to itself. The following sections define type equivalence
for particular classes of types. We will also refer to types being assignment
compatible. We say that a type Tl is assignment compatible with type T2 if
values of type Tl are allowed to be assigned to objects of type T2 , or passed
as value parameters to formals of type T2 • Equivalent types are always as
signment compatible. following sections define assignment compatibility

15

for each type class.

7.1 Basic Scalar Types

Syntax

<basic scalar type> ::=

Semantics

[long] integer
[long] real
[long] complex
logical
char

The basic scalar types are the familiar numeric, logical (true/false valued),
and character types. The meaning of the qualifier "long" is implementation
dependent. In the case of real and complex types, it is intended to correspond
to double-precision declarations in FORTRAN. It is not necessary for long
quantities to have a precision or range different from non-long quantities.

Two scalar types are equivalent if and only if their denotations are equiv
alent. A short scalar type is assignment compatible with the corresponding
long type (but not the reverse).

7.2 Record Types

Syntax

<record type> ::=

struct '[' { <field group> ';' ... } + [';'] 'J'
<field group> ::=

<type> { <identifier> ' " ... }

Semantics
A value or object having a record type is composed of fields as indicated

in the definition of the record type. If T I , •. • , Tn are type denotations, then

16

let R = struct [Tl XU, X12, ••• ; . .. Tn Xnl,'" J
R x;

defines R to be a record type and x to be a single variable of that type. Each
R consists of fields, which are accessed by (prefix) selectors named Xij. The
syntax is identical to that for function calls. Like subprograms in general,
record field selector names may be overloaded.

A record type M is equivalent to type M' if and only if M' is a record
type with the same number of fields in the same order with the same names,
and the type of each field of M is equivalent to the corresponding field's type
in M'. Only equivalent record types are assignment compatible.

7.3 Map and Domain Types

Syntax

<domain type> ::=
[< domain qualifier>] domain

[<domain qualifier>] domain' [' <integer expression> 'J'
<map type> ::=

[flex] <unspecific map domain> <type>
<specific map domain> <type>
valtype '(' < domain expression> ')'

<unspecific map domain> ::=

[<domain qualifier>] '[' ['.' <integer expression>] 'J'
<specific map domain> ::=

[<domain qualifier>] '[' <domain expression> 'J'
<rectangular domain constructor>

< domain qualifier> :: =
rect

An n-dimensional domain is a subset of zn, and has a domain type de
noted domain En] We call n the arity of the domain. An element of a
one-dimensional domain is an integer; an element of an n-dimensional do
main, for n > 1, is itself a map with type [1 .. n] integer; that is, it is a
tuple of n integers. The notation valtype(D) is an abbreviation of the type

17

[1 .. nJ integer, where n > 1 is the arity of D, or of the type integer if
n L Two domain types are equivalent if their arity is identical.

A map is a mapping from a domain to some codomain; map types are
an extension of ordinary array types. Two map types are equivalent if their
domains have the same arity, they have the same flexibility (indicated by
the presence or absence of the keyword flex), and their codomain types are
identical. Two map types are assignment compatible if both domains have
the same arity and the codomain types are equivalent. A map type is said to
be unspecific if it is not flexible and either has an unspecific map domain or an
unspecific codomain. An unspecific domain is denoted [] (one-dimensional)
or [*n] (n-dimensional). Record types are unspecific if they have at least
one unspecific field type.

The modifier flex indicates that variables of the type have a modifiable
domain. If M is a map type denoted by

flex [*n] T

and X is a variable of type M, then it is legal to assign to domainOf(X)
and it is legal to assign to X a map with a domain differing from that of
X. In general, T may be a type with map components that themselves have
unspecified domains. An assignment to X will set those domains as well as
the domain of X. The domain of an individual component of X, however,
cannot be changed independently of the rest of X, unless that component has
a flexible type itself (see the examples). A variable declared to have a flexible
type initially has all flexible domains (of it and its components) initialized to
the empty domain. A variable may not be declared with an unspecific type.
Unspecific types are mainly intended, instead, for use in formal parameter
specifications.

A domain qualifier is an assertion about the values of domains-either the
values of domain variables or expressions, or the domains of map variables or
map expressions. It does not affect type compatibility. It is an error for the
value of a variable, parameter, or expression to violate the assertion denoted
by a domain qualifier.

The presence of the rect qualifier indicates domains (or domains of map
values) that are rectangular subsets of integer tuples.

Examples

18

let
FlexTabType = flex [] struct [0 integer A; integer B] .J

FlexRectType = flex [] [] integer,
RaggedType = [] flex [] integer J

FlexRaggedType = flex [] flex [] integer,
PairRaggedType = [1 .. 2] flex [] integer,
PartRectType = [1 .. 3J [] integer"
ARectType = [1 .. 10J [0 .. 9] integer,
F = proc (ARectType X; ref RaggedType y) ... ;

FlexRectType Q;
FlexRaggedType R;
ARectType S;

1* RaggedType T;
1* PartRectType U;
PairRaggedType V;

ILLEGAL (unspecific domain) *1
ILLEGAL (unspecific domain in codomain) *1

Q : = [[1, 2 , 3], [7, 8 t 9] J;
Q := [[O,lJ, [9,10J J;
1* Q := [[0,1], [7,8,9J]; ILLEGAL ASSIGNMENT (not rectangular) *1
R : = [[0 .. 1], [7, 8 , 9]];

7.4 Subprogram Types

Syntax

<subprogram type> ::== <explicit subprogram header>

Semantics
Explicit headers (see §8.2) supply the names and types of formal pa

rameters to a subprogram literal. When used as types, they match any
subprogram of the same class taking the same number and equivalent types
of arguments, and returning an equivalent type.

19

Chapter 8

Expressions and Statements

Syntax

<statement> ::==

<expression>
<control statement>
<assignment>

<expression> ::=
<subprogram literal>

I <expression2>
expression2 ::== <primary>

I <prefix operator> <expression2>
I <expression2> <infix operator> <expression2>

<primary> ::=
<number>
<string literal>
true
false
<identifier>
proc <operator>
<subprogram closure>
<constructor>
<primary> <postfix operator>
<indexed expression>
<control expression>

20

(<expression>)
<predefined operator> ::=

** , (0 I <(0)

* I / I rem I mod I div I < <
+1-1(+)/#
= 1 < I > 1 <= I >= I /= I in
and I or I not I on

As given, this grammar is ambiguous; the ambiguity is resolved by priority
and grouping rules. In the listing above, the priorities of operators listed on
the same line are identical; those of operators listed on later lines decreases.
Operators group to the left, except for '**', which groups to the right.

Semantics
The primaries true and false denote the logical constant values.
The primary "proc <operator>" denotes the subprogram denoted by

the specified operator. (It is used in contexts where, for example, the binary
function '+' is to be passed as a parameter.)

The following sections describe the other kinds of expressions and pri
manes.

8.1 Control Expressions and Statements

Syntax

<control expression> ::==

<if expression>
begin <block> end

<control statement> ::=

<loop statement>
<exit statement>

<if expression> ::==

if <guard> then <block>
{ elsif <guard> then <block> .«.}
[else <block>]

21

fi
<guard> ::=

< logical expression>
< logical map expression>

<loop statement> ::=

[<loop type> < control clause>]
do <block> od

<loop type> ::=
for

I forall
<control clause> ::=

[<control identifiers clause> from] <domain expression>
[by < integer vector expression>)

<control identifiers clause> ::=
<identifier>
'[' { <identifier> ' t' ... } + 'J'

<block> ::==
{ <block clause> ';' ... }+ [';']

<block clause> ::=
<constant declaration list>
<variable declaration>
<statement>

<exit statement> ::=

Semantics

return [<expression>]
exit

The terms control expression and control statement generally refer to con
structs whose components are not necessarily evaluated in applicative order.

An if-expression provides for conditional evaluation; it selects values from
its constituent blocks depending on the values of its guards. The guards may
either all be logical expressions, or they may all be maps with identical
domains and codomain logical.

When its guards are logical expressions, evaluation of an if-expression
consists of evaluating the guards in order until they are exhausted or one eval
uates to true. The corresponding block is evaluated and its value becomes

22

the value of the if-expression. If none of the logical expressions evaluates to
true, the block following else, if any, is evaluated and supplies the value
of the if-expression. Otherwise, the if-expression has a void value. If the
expression occurs in a context requiring a non-void value, then all the blocks
must yield values of the same type, and it is an error for the if-expression to
yield a void value.

When its guards are all maps with codomain logical, an if-expression's
blocks must also be maps whose domains have the same arity as those of its
guards, and whose codomains must be identicaL The result of evaluating

if C l then E1 ... elsif Cn then En else Ed fi

is a map M whose domain is the union of the domains of the C i and whose
codomain is the same as the Ei . If P is in the domain of M then M[P] is
computed by

An else clause is required for these if-expressions.
Evaluation of a loop statement causes repeated evaluation of the block

(which is called the loop body.) The loop always yields a void value. In
the absence of a control clause, a loop iterates until an exit statement is
evaluated.

When a control clause is supplied, the loop body is repeated for each
value it specifies, which are bound in turn to the control identifiers, if present.
The loop expression declares any control identifiers, whose scope is the loop
itself. The control clause specifies a (possibly null) domain (a subset of zn
for some n > 0.) If there is a single, unbracketed identifier, it is bound to
the elements of this domain in some sequence. When the control identifier
clause is a bracketed list of identifiers, [iI, ... in], then n must be the arity of
the domain and for each element, p, of the domain, in some order, the i j are
bound to p[j] (so that p == [il' ... , in]).

The control clause determines the domain as follows. The domain ex
pression must have a value, D, of type domain En] for some n (compatible
with the control identifiers clause.) The array expression following the key
word by, if present, must have a value, S, of type [1 .. n] integer or, if
n = 1, of type integer (which we'll treat as a one-element array in what
follows). The elements of S must all be positive. If this array expression is

23

not present, S defaults to an array whose elements are all 1. Informally, the
array expression specifies a step size for each of the indices of the domain.
More rigorously, the domain specified by the control clause is given by the
following expression.

D * shift (inject(project(shift (D), S), S), lwb(D))

If the loop type is for, then the iterations of the loop body happen se
quentially. If the domain expression is a rectangular domain constructor,
its elements are enumerated in lexicographic order (last index varying most
rapidly in increasing order). Otherwise, no order is guaranteed. When the
loop type is forall, the iterations of the loop proceed collaterally (possibly in
parallel.) Nothing can be guaranteed about the effects of multiple iterations
writing to the same variable1 or in general about the order of any side-effects.

Evaluation of a block causes the evaluation of its constituent statements
in order. This evaluation may be interrupted by the evaluation of an exit
statement. The value of a block is that of its last clause (or void if the last
clause is a declaration.) A block is a defining scope.

Exit statements provide means of leaving a loop or subprogram body.
Evaluating an exit terminates the innermost enclosing loop expression. Eval
uating a return terminates the evaluation of the innermost dynamically en
closing subprogram body, yielding the value of the given expression, which
must be of the type returned by the subprogram, as the value of that body.
No expression may be supplied for a procedure (a subprogram with a void
value.) An exit statement may not cause exit from a forall loop.

Examples

for [1 .. N] do Sod; 1* Repeat S N times. *1

for i from [1 .. N] do S := A[i] + Sad;
1* Add elements 1 to N of A to S. *1

for [i,jJ from [1 .. N t 1 .. N] do M := max(M,A[i,j]) ad;
for p from domainOf(A) do M := max(M,A[p]) od;

1* Find the maximum of all elements in A (two ways). *1

24

for [i,j] from [0 .. N, 0 .. N] by [l,2J do Sod;
1* Repeat S for [iljJ at [OIOJ t [1,2J J ••• J [1,0], [1 1 2J J ••• *1

8.2 Subprogram Literals

Syntax

<subprogram literal> ::==
[<pragma>] <subprogram header> : <subprogram body>

<subprogram header> ::== proc [({ <formal> ';' ... } +)] -> <type>
I proc ({ <formal> ';' ... }+)

<generic subprogram literal> ::==
generic ({ <identifier> ' t' ... } +) <subprogram literal>

<formal> ::==
(ref] <formal type> { <identifier> ' " ... } +

<subprogram body> ::==
<expression>
external [<interface clause>] <identifier>
forward

<interface clause> ::==
'(' <identifier> ')'

Semantics
A subprogram literal denotes a subprogram, which, when called, performs

a computation and may return a value. A subprogram literal is itself a
defining scope.

A subprogram generally takes parameters, whose types must be declared
in the subprogram header. Parameters may be passed either by value-the
called routine being passed a copy of the argument--or (as indicated by the
keyword ref) by reference-the formal parameter of the called routine is
identified with the actual parameter during execution of the calL

The body of a subprogram indicates the computation to be performed
or the object to be returned. When the body is an expression, its type
must be assignment compatible with that of any return type specified for the
subprogram. For a selector, that part of the expression denoting its value

25

must have the form of an object denotation, and the type of the denoted
object must be equivalent to that specified as the return type.

When the body of a subprogram is the clause external P, and the sub
program is used in a program, the subprogram identifier P must must be
declared with an expression as body elsewhere in the compilation or must be
exported with an expression as body from some compilation in that program.
The type of P must be that indicated by the header. For external BU bpro
grams written in languages other than FIDIL ("foreign" subprograms), the
interface clause indicates the language (and thus any necessary calling con
ventions or parameter conversions).

Subprogram literals whose body is the keyword forward may only ap
pear as the expression in a constant declaration. If the constant declaration
in which it appears is used in the compilation, then there must be a corre
sponding complete constant declaration in the same defining scope, with the
same identifier, and in which the expression is again a subprogram literal
with the same type. There may be more than one incomplete declaration for
a given complete declaration, and each incomplete declaration may appear
either before or after the corresponding complete declaration.

A generic subprogram literal does not directly denote a subprogram, but
is rather a template for subprogram literals. The identifiers, called generic
formals, in the list following the keyword generic may stand for types or for
the integer constants that appear in unspecific map type specifiers. In effect,
a generic subprogram literal stands for all possible subprograms obtainable
by substituting types or integers for these identifiers. The body of a generic
subprogram literal is not translated-and therefore not checked for legality
at the time it is initially encountered. Indeed, it can't be, since the types of its
arguments, and therefore the meanings of subprogram calls within its body,
are unknown. Only when an actual call is resolved to the generic subprogram
does the substitution of actual types for the generic formals take place, and
only then is the resulting body checked for semantic consistency.

The scope of the generic formals is the entire subprogram literal that
follows them. They are not hidden by any inner declarations; it is illegal
to declare quantities with the same names as the generic formals within the
subprogram literal.

26

8.3 Subprogram Calls and Partial Closures

Syntax

<subprogram closure> ::=

<procedure primary> '(' { <closure argument> ' " ... }+ ')'
<closure argument> ::=

<expression>
'?'

Semantics
A subprogram closure first causes evaluation of any arguments. If all

arguments to the function are present, then execution continues with execu
tion of the body of the subprogram designated by the procedure primary. In
this case, the closure is called a call. If r > 0 arguments are missing (that is,
are left null, with the surrounding commas left in,) then the closure is called
a partial closure of the designated subprogram. The value of this partial
closure is itself a subprogram taking r arguments. At least one argument
must be supplied in a partial closure. When this partial closure's value is
itself called with r arguments~ the result is as if those argument values were
inserted for the arguments missing from the closure and the result treated as
an ordinary call.

A subprogram with no arguments must have a void value (it is executed
for its side-effects alone.) To be called, this subprogram's designator must
be followed by empty parentheses.

The order in which argument expressions are evaluated is undefined.

8.4 Constructors

Syntax

<constructor> ::=
<map constructor>
<record constructor>
<rectangular domain constructor>

<map constructor> ::=

27

'[' ['*' <integer literal> ':'] { <expression> ' " ... } + ']'
'[' <control clause> : <expression> ']'

<record constructor> :: =
< record type identifier> '(' { <expression> ' " ... } + ')'

<rectangular domain constructor> ::=
'[' { <dimension> ',' ... }+ ']'

<dimension> ::=

< integer expression> .. < integer expression>

Semantics
Constructors are expressions that build composite objects. The compo

nents specified by the expressions must conform in type and number to the
components indicated by this type. Both maps and records may be speci
fied extensionally-as a list of expressions. The nth component expression
corresponds to the nth field of the record or to a first index of n for a map.
The optional '*n:' at the beginning of a map constructor is used to indicate
the arity of the map; it defaults to one. In an extensional map constructor
for a map of arity n > 1, each component expressions must itself represent a
map of arity n 1 (except that the '*n :' is unnecessary, and indeed ignored,
for these component expressions). The most deeply-nested expressions cor
respond to the first index. For example,

let
C = [*2: [1,2], [3,4], [St 6]],

1* C is of type [*2] integer. *1
1* C[[1,1]] = 1, C[[2,1]] = 2, C[[l,2]] = 3, etc. *1

Q = [[1 t 2]) [3, 4] J [5 J 6]];
1* Q is of type [*1] [*1] integer. *1
1* Q[1] [1] = 1, Q[1] [2J = 2, etc. *1

A map constructor may also specify a rule (the second form given in the
syntax.) The control clause (see §8.1) then specifies the domain of the map.
For each item of the domain, the expression is evaluated to give the image
of that value. If the control clause specifies control identifiers, these may be
used in the expression. Evaluation is as for foraH: no order is specified and
the elements may, in fact, be evaluated in parallel.

A record constructor for a record type, R, whose fields have types Ti may
also be applied to arguments whose types are [D] Ti for some (common)

28

domain D. The result is of type [D]R; its fields' values at a given domain
point are those of the arguments at that point. Likewise, such a record
constructor may also be applied to arguments of type [Dr] [D'2] T with result
of type [Dl:l [D21 R, and so forth.

The domain constructor yields a domain consisting of all tuples of integers
such that each integer is in the range denoted by the corresponding element
of the dimension list.

Examples

[[1 .. 10J : 0]
1* The constant 0 map on the domain 1 .. 10. *1

[i from [1 .. 10] : i J
1* The identity map on the domain 1 .. 10 *1

8.5 Indexing

Syntax

<indexed expression> ::=

<map primary> { <indexer> ... } +
<indexer> ::=

'[' { [<expression>] , " ... } 'J'

Semantics
The notation "A[al,'" ,an]" is equivalent to "A[al]'" [an]." In the fol

lowing discussion, we assume the latter form.
Indexing a map produces the value or (assignable) object in the codomain

of a map corresponding to a given element of the domain. The expressions
may be integers, in which case the domain value is the tuple consisting of
those integers, or there may be a single expression in the domain of the map.
It is an error if the index is not in the current domain of the map.

An expression E of the form

A [] ... [:I [in] ,
'--..--'

n

29

is a selector denoting a map object with the property that

E[io]' .. [in-I] = A[iaJ ... [in]

(i.e., these two expressions denote the same variable; taking their value or
assigning to them have identical results.)

8.6 Assignment

Syntax

<assignment> ::=
<left side> : = <right side>
<left side> *: = <right side>

<left side> ::=

<object expression>
({ < object expression> ' t' ... } +)

<right side> ::=
<expression>
({ <expression> ' j' ... })

Semantics
An < object expression> in the syntax above refers to an expression that

designates an (assignable) object (a variable, indexed expression, or selector
call). An assignment may be to one or to several such objects simultaneously.
In the latter case, the right side may be either a single, record-valued or map
valued expression-whose components are assigned in order to the objects
on the left side-or a parenthesized list of values. There must be identical
numbers of values to be assigned as objects to receive them.

The': =' operator assigns an entire object of any type. The types of the
right-side entities must be assignment compatible with those of the corre
sponding left-side objects. A flexible map object may receive a map value
with any domain of the appropriate arity. A non-flexible map object may
only receive maps with identical domains. These rules apply recursively to
the elements of the codomain.

The '*: =' operator applies only to maps. The rules governing it are the
same as for ': =' , except that it assigns values from the right side(s) only at
points in the intersection of the domains of the left and right sides.

30

8.7 Standard :Functions and Operators

Tables 8.1 and 8.2 give the standard operators and functions on domains.
Tables 8.3-8.6 give the standard operators and functions on maps. Tables 8.7
and 8.8 give the standard arithmetic and mathematical operators.

31

Expression

nullDomain(n)

pin D

lwb(D)
upb(D)

arity(D)
sizeOf(D)
shift(D, S), D « S

shift (D)

inject(D, S)

project(D, S)

expand (D, S)

contract (E , S)

Meaning
The empty domain of type domain[n]. The quan
tity n must be a compile-time integer constant.
Union of Dl and D2 •

Intersection of Dl and D 2 •

Set difference of Dl and D2 •

where D is a domain of arity nand p is an array
of type valtype(D): a logical expression that is
true iff p is a member of D.
For a domain of arity n: An integer map with
domain [l..n] (for n = 1, an integer) whose kth

component is the minimum (lwb) or maximum
(upb) value of of the kth component of the ele
ments of D.
yields n for a domain of arity n.
The cardinali ty of D.
Where S is of type valtype(D) and n is the arity
of D: The domain {d + Sid in D}.
Same as shift(D, -lwb(D)).

The domain {d*Sld in D}.

The domain {d0 Sid in D}, where '0' denotes el
ementwise integer division, rounding toward -00.

The domain {ele 0 S in D}.

The domain D such that E = expand(D, S), if it
exists.

Table 8.1: Operators and functions on domains, part 1.

32

Expression

accrete(D)

boundary(D)
reduce(D, S)

Meaning

The set of points that are within a distance 1 in
all coordinates from some point of D.
accrete(D) - D.
where D is a domain of arity nand S =::;

[it, ... ,ir],l ~ i 1 < ... < ir ~ n. The result is
the domain of arity n - r consisting of all (n - r)
tuples

[j}, ... ,ji1-bji1+h"'] such that [ill'" ,jn] E
D.

Table 8.2: Operators and functions on domains, part 2.

33

Expression

domainOf(X)

toDomain(X)

image(X)

upb(X)
Iwb(X)
arity(X)
X#Y

shift(X, S),
X« S
shift(X)

Meaning

The domain of map X. This may also appear in a left
hand side context if X is a partial map variable. The
result of an assignment to the domain of X is a map
whose initial image consists of undefined values.
w here X is a logical map:

{p E domainOf(X)\X[PJ}.
where X is a map whose codomain is an integer map of
arity n: the domain of dimension n whose elements are
all elements in the image of X-that is, the set {d\X[P] ==
d, for some pl.
upb(dornainOf(X))
lwb(domainOf(X))
arity(domainOf(X))
The composition of X and Y. X and Yare maps;
Y's codomain must be valtype(domainOf(X)); and
image CY) must be a subset of domain Of (X).

X # Y is a map object (which is assignable if X is
assignable) such that

(X #Y)[P] = X[Y(p]].
Hence, its domain is domainOf (Y) .

where S is a [l..n] integer (an integer for n == 1), with
default value -lwb(X), and n is the arity of X: the map

X # [p from domainOf (X): p-SJ.

inject(X, S) X # [p from inject (domainof(X) , S): pIS].

project (X, S) X # [p from project (domainOf(X) J S): S*pJ.

contract(X, S) [p in expand ([0 .. 0 I ••• , 0 .. 0], S)
[project(X « -p, S)].

expand(X, S) Produces a map defined by the relation
expand (contract ex, S) ,S) = X.

Table 8.3: Operators and functions on maps) part 1.

34

Expression

XonD
X(+)Y

eoncat(Et , .. - ,En)

Meaning

The map X restricted to domain D.
where domainOf(X) n domainOf(Y) == {}: the
union of the graphs of X and Y, whose codomains
must be identical and whose domains must be of
identical arity.
Concatenation of E 1 , •. _, E2 - The Ei must be 1-
dimensional maps with contiguous domains and
some (common) codomain T, or values of type T,
whieh are treated as one-element maps with lower
bound O. At least one of the Ei must be a map on
T. The result has the same lower bound as E1 and
an upper bound equal to the sum of the lengths of
the Ei .

Assuming that F takes arguments of type Ti and
returns a result of type T, F<D is a function extend
ing F to arguments of type [Di] Ti , where the Di
are domains of the same arity, and returns a result
of type [D] T, where D is the intersection of the Di .

The result of applying this function is the result of
applying F pointwise to the elements correspond
ing to the intersection of the argument domains.

For F as above returning type T1 : The extension of
F to arguments of types (Di]T as above, returning
a value of type [D1]T1 defined by

F< @ >(xt,. - ., xn)
== F@(Xl,""Xn) (+) (Xl on (D t - D)).

Table 8.4: Operators and functions on maps, part 2.

35

Expression

compress (X)

compress(X, W)

decompress(X, W)

reduce(X, j, S, vo)

reduce(X, j, vo)

Meaning

where X is a map on a domain of arity 1: The
one-dimensional map, X' with a contiguous domain
having a lower bound of 1 such that X'[i] is the
value of X(Pi], for Pi the ith smallest element in the
domain of X.

where W is a one-dimensional map whose codomain
is logical: compress(X on toDomain(W)).

The map X' such that
compress(X', W) = compress(X).

where X is a map of arity n and codomain C;
S = [it, ... , ir J, 1 :::; i l < ... < ir ~ n; and f is
a function taking two arguments, one of some type
R, the second of type C, yielding a result of type R.
The result, B, is of type T = [*(n - r)]R, or T = R
if n = r, and has domain reduce(domainOf(X),S).
Its values are defined as follows.

B[jl,'" ,ji1-l,jil+I, ...]
= f(f(·· . f(vo, vt)" ..), vm). where the Vi are

the elements
X[j}, ... ,jiI-I, k,jil+1, ... J

for all k for which the expression is defined, taken
in some undefined order.
where X is any map with codomain C; Vo is of some
type R; and f is as above. The result is of type R
and has the value Vo if the domain of X is empty,
and otherwise

f(f(··· f(va, Vl)," .), vm)

where the Vi, i > 0 are the elements of X is some
undefined order.

Table 8.5: Operators and functions on maps, part 3.

36

Expression

sort(X, P)

trace(A, S)
outerproduct(A, B)

transpose(X[,7r])

flip(X, 7r)

flip(X)

remap(X)

remap(Y, m)

Meaning

where X is a contiguous, one-dimensional map with
codomain T and P is logical-valued binary function
with arguments of type T: the map X' with the
same domain as X that results from permuting the
image of X so that i < j implies P(X'[i], X'[jD.
The permutation is strict: the order of image el
ements x and y such that P(x, y) and P(y, x) is
unchanged by the sort.
reduce(A,proc +, S, 0)
where A and B are maps with rectangular domains
of dimensions na and nb and the same codomains:
The map C defined as follows.

C[i1 , ••• , ina,j!,'" ,jnb] ==
A[il' ... , i n a1*B[jt, ... ,jnbJ

where 7r == [1rl, ... , 1rn] is a permutation of the in
tegers between 1 and n, and n is the arity of the
map X: The object, X', resulting from transpos
ing the indices of X according to 1(". Specifically,
X' [i1fl , ... , i7!"nl == X[il'" ., in]. The default for 7r is
[2,lJ.
where X is of type [Dd ... [Dn] T: The map, XI
defined by the following.

X'[P1rl]'" [P7!"rJ == X[Pl]'" [PnJ.
The default for 7r is [2,1].
where X is a record of maps with identical domains:
produces the map taking p in the common domain
to the record with field values FdpJ, where the Fi
are the fields of X. X can also be a map of records,
in which case flip performs the inverse operation.
The object resulting from "reassociating" the in
dices of X, which must be of type [*m] [*n] T to
form an isomorphic object, Y of type [*m + nJ T.
If p is a valid index of X and q is a valid index of
X [p], then Y [concat (p, q)] = X [p] [q].
If X, Y, and m are as above, then remap(Y, m)=X.

37
Table 8.6: Operators and functions on maps, part 4.

Expression

+, -, *, /, **
rem, mod, div

<, >, <=, >=, =, /=

and, or, not

Meaning

For scalar arguments, the standard arithmetic
operators. The division operator, 'I', produces a
long real result when its operands are integers.
The binary operator div applies to integers, pro
ducing the quotient of its operands truncated
to an integer. The rem operator is defined
by the formula x == (x div y)*y + (x rem V),
for y f=. O. The mod operator is defined by
x mod y == x - y lx/yJ , for y =F O. The same
conversion rules apply as for FORTRAN.
When applied to maps of the same arity and
codomain, these operators apply pointwise, pro
ducing a map whose domain is the intersection
of the domains of operands. Finally, the oper
ators are also overloaded to allow one operand
to be of a scalar type T and the other to be a
map whose codomain has a type that the oper
ator can legally combine with type T. In this
case, the operand of type T is treated as a con
stant map with the same domain as the other
operand. This latter definition is recursive; for
example, the codomain of the map operand may
itself be a map.
Relational operators (/ = is "not equaL") These
operators also extend to maps as for the arith
metic operators.

The standard logical connectives. These also
extend to maps of scalars.

Table 8.7: Arithmetic Operators and Elementary Functions, part L

38

Expression

exp(x), In(x), loglO(x)
sin(x), cos(x), tan(x)
sqrt(x)
atan{x), atan(x,y)

abs(I)

floor (x), trunc{ x),
round(x),
toSingle(x),

toLong(x),
tolnt{x)

max(xt, ... , In)
rnin(Xl" .. , Xn)

signum(X)

reaIPart(Z),
imagPart(Z)

Meaning

The standard elementary mathematical functions.
They are defined on real and complex quantities,
yielding results of the same type.

Absolute value. For real and complex quantities,
yields a real value of the same length, otherwise an
integer.
Scalar coercions. Floor, trunc, and round apply to
reals, producing results rounded toward - inf, to
ward 0, and toward nearest. The functions, toInt,
toSingle, and toLong apply to all types, converting
to the nearest integer, single-length real (complex),
or long real (complex) quantity. The last three op
erations also act on logical values, converting true
to 1 or 1.0 and false to 0 or 0.0.
Maximum and minimum. All operands must be of
the same type-----an integer or real type.

Returns the integer -1, 0, or 1, depending on
whether X (which may be an integral or real) is
negative, zero, or positive.
Real and imaginary parts of the complex quantity
Z. Either of type real or long real, depending on
the the type of Z.

Table 8.8: Arithmetic Operators and Elementary Functions, part 2.

39

Chapter 9

Pragmas

A pragma is an "escape clause" allowing the programmer to give the trans
lator advice or other directives that have no semantic effect or that do not
fit naturally into the rest of the language.

Syntax

<pragma> ::= '(*' { <pragma expression> 'J' ... }+ '*)'

Semantics
The possible pragma expressions are given in Table 9.1. The interpreta

tion of a pragma. expression depends on the particular pragma; it need not
follow the usual strictures of FIDIL semantics.

Expression I
inline

Meaning

Indicates that calls on the subprogram literal to
which this pragma is attached should be open
coded (that is, each call should be replaced by a
suitably-modified copy of the body).

Table 9.1: Pragmas.

40

Index

<,37
<==, 37
<<<1>,34
>,37
>==, 37
*, 37
*,31
**,37
+,31,37
-, 31, 37
/,37
/=,37
=,37
?,26
<0,34
#,33

abs, 38
accrete, 32
ambiguity, 11-12
and keyword, 20
and operator, 37
arity, 16
arity function, 31, 33
assignment

syntax, 29
atan, 38

backslash (\), 5
basi c scalar type

40

syntax, 15
begin keyword, 20
block

syntax, 21
block clause

syntax, 21
BNF Notation, 3
boundary, 32
by keyword, 21,22

char keyword, 5, 15
closure, 26
closure argument

syntax, 26
comments, 5
compilation, 6

syntax, 6
compilation item

syntax, 6
complete declaration, 10
complex keyword, 15
compress, 35
concat, 34
constant declaration

syntax, 9
constant declaration list

syntax, 9
constant declarations, 10
constructor

syntax, 26

contract, 31, 33
control clause

syntax, 21
control expression

syntax, 20
control identifiers clause

syntax, 21
control statement

syntax, 20
cos, 38

decompress, 35
defining scope, 9, 23, 24
dimension

syntax, 27
div keyword, 20
div operator, 37
do keyword, 21
domain keyword, 16
domain qualifier, 17

syntax, 16
domain type

syntax, 16
domainOf,33

else keyword, 21
elsif keyword, 20
end keyword, 20
exit keyword, 21, 23
exi t statement

syntax, 21
exp, 38
expand, 31, 33
explicit header

syntax, 24
exponent

syntax, 4

41

export keyword, 6
exported declaration, 7
exports keyword clause, 6
expreSSIon

syntax, 19
extent, 10
external keyword, 6,24,25
external declaration, 6, 10, 25

false keyword, 19, 20
fi keyword, 21
field group

syntax, 15
flex keyword, 16, 17
flip, 36
floor, 38
for keyword, 21, 23
forall keyword, 21, 23, 27
foreign subprogram interfaces, 25
formal

syntax, 24
forward keyword, 24, 25
forward declaration, 10, 25
from keyword, 21

generic keyword, 24
generic formal, 25
generic subprogram literal

syntax, 24
guard

syntax, 20

header files, 8

identifiers
syntax, 4

if keyword, 20
if expression

syntax, 20
image, 33
imaginary numbers, 5
in keyword, 20
in operator, 31
#incl ude directive, 6, 8
incomplete declaration, 10, 25
indexed expression

syntax, 28
indexer

syntax, 28
inject, 31, 33
inline procedures, 39
instance, 10
integer keyword, 15
integer Ii teral

syntax, 4
interface clause, 25

syntax, 24

left side
syntax, 29

let keyword, 9, 11
In, 38
loglO, 38
logical keyword, 15
long keyword, 15
loop statement

syntax, 20
loop type

syntax, 20
lwb, 31, 33

main procedure, 7
map constructor

syntax, 26
map type

42

syntax, 16

max, 38
min, 38
mod keyword, 20
mod operator, 37

not keyword, 20
not operator, 37
nullDomain function, 31
number

syntax, 4
numeric literals, 4

od keyword, 21
on keyword, 20, 34
on operator, 34
opaque declaration, 10
operator

syntax, 12
operator keyword, 12
operator character

syntax, 12
operator declaration

syntax, 12
or keyword, 20
or operator, 37
other operator

syntax, 12
outer constant declaration

syntax, 9
outer constant declaration list

syntax, 9
outer declaration, 6

syntax, 6
outerproduct, 36
overloading, 11-12

postfix keyword, 12

pragma
syntax, 39

pree keyword, 12
predefined operator

syntax, 19
preprocessor, 8
primary

syntax, 19
proe keyword, 19, 20, 24
program, 6
project, 31, 33

real keyword, 15
real literal

syntax, 4
record constructor

syntax, 27
record type

syntax, 15
reet keyword, 16, 17
rectangular domain constructor

syntax, 27
reduce, 35
ref keyword, 24
rem keyword, 20
rem operator, 37
remap, 36
return keyword, 21, 23
right side

syntax, 29
round, 38

scope, 9, 23, 24
defining, 9
of outer declaration, 6

shift, 31, 33
sign

43

syntax, 4
signum, 38
sin, 38
sizeOf function, 31
sort, 36
specific map domain

syntax, 16
sqrt, 38
statement

syntax, 19
string literal

syntax, 5
string literal character

syntax, 5
string literals

syntax, 5
struct keyword, 15
su bprogram body

syntax, 24
subprogram closure, 26

syntax, 26
subprogram hea.der

syntax, 24
subprogram literal

syntax, 24
subprogram type

syntax, 18

tan, 38
then keyword, 20
toDomain, 33
toInt, 38
toLong, 38
toSingle, 38
trace, 36
transparent declaration, 10
transpose, 36

true keyword, 19, 20
trunc, 38
type

syntax, 14
type keyword, 9
type declaration, 11

syntax, 9
types

definition, 11

unspecific map domain
syntax, 16

upb, 31, 33

valtype keyword, 16, 17
variable declaration

syntax, 9

44

