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1 Introduction

For many problems in astrophysics and space sciences, it is desirable to compute solutions in
a way that preserves spherical symmetry, so that the dynamics of small perturbations about the
spherically symmetric case are not overwhelmed by numerical error. Traditionally, such calculations
have been done by discretizing the equations expressed in spherical coordinates. This approach has
significant numerical problems, due to the singularity in the spherical coordinate system at the
poles. An alternative approach is based on the “cubed-sphere” representation (Figure 1). In this
approach, a solid sphere is represented as the disjoint union of the images of smooth mappings
of multiple rectangular blocks. Away from the block at the center of the sphere, the coordinate
surfaces of the mappings coincide with spherical surfaces, thus providing a coordinate system that,
when discretized, will preserve spherical symmetry, at least away from the center of the sphere.

At the block boundaries, the coordinate lines meet continuously, but are not smooth. In ad-
dition, the grids meet in a way that does not lead to a single logically rectangular coordinate
transformation. These features are difficulties for standard finite-volume methods on structured
grids. The accuracy of such methods depends strongly on the smoothness of the grid mapping. At
places where the grid mapping fails to be smooth, there is a loss of one order of accuracy in the
truncation error. For a second-order accurate method, this leads to a local truncation error that
is first-order at block boundaries. Similar issues arise for finite-volume methods on locally-refined
structured grids: at refinement boundaries, such methods lose one order of accuracy. For many
problems, a such a reduction to first-order accuracy is unacceptable, even on a set of codimension
one.

To address this issue, we we are developing a new class of finite-volume methods on locally-
refined and mapped-multiblock grids. The central feature of these methods is that they are at least
fourth-order accurate in regions where the solution is smooth; otherwise, we want to retain to as
great an extent as possible the advantages of traditional finite-volume methods. In this paper, we
discuss our approach to the design of such methods.

2 High-Order Finite-Volume Methods

In the finite volume approach, the spatial domain in RD is discretized as a union of rectangular
control volumes that covers the spatial domain. For Cartesian grid finite volume methods, a control
volume Vi takes the form

Vi = [ih, (i+ u)h] , i ∈ ZD , u = (1, 1, . . . , 1),
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Figure 1: Examples of multiblock grids. Right: 3D cubed-sphere grid. Left: equatorial slice through
a cubed-sphere grid, showing five logically-rectangular coordinate systems.

where h is the grid spacing.
A finite volume discretization of a partial differential equation is based on averaging that equa-

tion over control volumes, applying the divergence theorem to replace volume integrals by interals
over the boundary of the control volume, and approximating the boundary integrals by quadratures.
For example, for time-dependent problems of the form

∂U

∂t
+∇ · ~F = 0 (1)

The discretized solution in space is the average of U over a control volume.

〈U〉i(t) =
1
hD

∫
Vi

U(x, t)dx (2)

In that case, we can compute the evolution of the spatially discretized system by a method-of-lines
approach.

d〈U〉i
dt

= − 1
hD

∫
Vi

∇ · ~Fdx = −1
h

D∑
d=1

〈F d〉i+ 1
2
ed − 〈F d〉i− 1

2
ed (3)

〈F d〉i± 1
2
ed =

1
hD−1

∫
A±d

F ddA, (4)

where A±d are the high and low faces bounding Vi with normals pointing in the ed direction. In
this case, the finite volume approach computes the average of the divergence of the fluxes on the
left-hand side of (4) with the sum of the integrals over faces on the right-hand side, with the latter
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approximated using some quadrature rule. Such approximations are desirable because they lead to
conserved quantities in the original PDE satisfying an analogous conservation law in the discretized
system.

Most finite-volume methods use the midpoint rule to approximate the flux integrals in (4),
leading to a second-order accurate method. We will be developing higher-order methods (fourth-
order or better) using the approach in [1]. The starting point for this approach is to replace the
integrand in the right-hand side of (4) by a Taylor expansion about the center of the face:∫

Ad

F ddA =
∑

0≤|r|<R

1
r!
∇rFd|x=x0

∫
Ad

(x− x0)rdAx +O(hR+D−1), (5)

r! = r1! . . . rD! , qr = qr1
1 . . . qrD

D . (6)

For example, if we take R = 4, we obtain

〈F d〉 = F d(x0) +
h2

24

∑
d′ 6=d

∂2Fd

∂x2
d′

+O(h4). (7)

If we replace the derivatives by finite-difference approximations of a suitable order that are smooth
functions of their inputs, the resulting approximation of the average of the flux divergence over a
cell is O(hR). In this paper, we will be concerned with the case R = 4.

A commonly-occuring case is where the flux is a product of two other variables; for example,
in advection, the flux is a product of the normal component of velocity and the advected quantity.
Similarly, it is sometimes useful to compute average of products over control volumes. In these
cases, we can use the approximations

〈fg〉i = 〈f〉i〈g〉i +
h2

12
∇f · ∇g +O(h4) (8)

〈fg〉i+ 1
2
ed = 〈f〉i+ 1

2
ed〈g〉i+ 1

2
ed +

h2

12

∑
d′ 6=d

∂f

∂xd′

∂g

∂xd′
+O(h4) (9)

with the first derivative terms approximated by second-order accurate centered differences.
We apply the approach described above to the case of a scalar advection equation

∂s

∂t
+∇ · (~us) = 0 (10)

where s is the advected scalar, and ~u = ~u(x) is an advection velocity. Given the solution 〈s〉ni ≈
〈s〉i(tn), we want to compute 〈s〉n+1

i using a fourth-order accurate method based on the semi-
discrete formulation (2), using a fourth-order Runge-Kutta method as our time-stepping scheme.
We assume that we know 〈ud〉i+ 1

2
ed , the average of the normal components of the discrete velocity

field over cell faces. To compute the right-hand side as a function of the discretized data, we use (4)
and (9), with the standard deconvolution algorithm to compute fourth-order accurate face averages
from cell averages [4].

〈s〉i+ 1
2
ed =

7
12

(〈s〉i + 〈s〉i+ed)− 1
12

(〈s〉i−ed + 〈s〉i+2ed) (11)

For hyperbolic problems, it is also necessary to introduce limiters to suppress oscillations in the
presence of discontinuities and underresolved gradients. To do this, we apply an extension of the
PPM limiter [3,4] to the values obtained from the deconvolution formula (11). In this approach, we
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Figure 2: Advection of a piecewise-constant scalar field. Left: fourth-order accurate method, no
limiter. Right: fourth-order accurate method, with limiters from [3,6].

view the PPM limiter as producing limited, and possibly double-valued face averages of s. In the
latter case, we choose the upwind value at the face to compute the flux. The use of the limiter [3]
leads to an algorithm that preserves fourth-order accuracy in the presence of smooth extrema. If,
in addition, there is a constraint that s remains non-negative, we can use a version of the Zalesak
FCT limiter in [6] to impose that constraint, with the low-order method given by the CTU scheme
in [2]. Since we do not use the FCT limiter to impose any bounds other than positivity, the method
should remain fourth-order accurate for smooth data. This is confirmed in Table 2, in which we
see fourth-order convergence for a Gaussian profile in two dimensions advected by a rigid-body
rotation. On the other hand, in figure 2, we see that a circular blob is advected by this method
without any apparent oscillations.

1
h0

no limiter rate limiter rate Zalesak rate
16 80.0384 – 79.152 – 79.152 –
32 45.2754 0.822 37.4879 1.078 37.5237 1.076
64 7.54183 2.59 7.46333 2.328 7.46309 2.329
128 0.51193 3.88 0.510228 3.87 0.510228 3.870
256 0.0324131 3.98 0.0324245 3.98 0.0324245 3.975
512 0.00205496 3.98 0.0020557 3.979 0.0020557 3.979

Table 1: Max norm error as a function of mesh spacing for advection of a Gaussian profile by a rigid-
body rotation in two dimensions. The table shows errors and convergence rates for, respectively,
the method without any limiter, with only the extremum-preserving limiter in [3], and with the
extremum-preserving limiter and the Zalesak limiter in [6] used only to preserve positivity.
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3 Mapped Grids and Freestream Preservation

We can extend this approach to the case of mapped grids. We assume that we have a smooth
mapping X from some abstract coordinate space into physical space:

X = X(ξ) , X : [0, 1]D → RD.

Given this mapping, the divergence of a vector field in physical space can be written in terms of
derivatives in the mapping space, that is

∇x · ~F =
1
J
∇ξ · (NT ~F ), (12)

J = det(∇ξX) , NT
p,q = det((∇ξX)(p|eq)) (13)

where A(p|v) denotes the matrix obtained by replacing the pth row of the matrix A by the vector
v. The relationship (12) is an easy consequence of the chain rule, equality of mixed partials, and
Cramer’s rule. We can also rewrite (1) in terms of the independent variable ξ.

∂(JU)
∂t

+∇ξ · (NT ~F ) = 0 (14)

The semi-discrete form of (14) corresponding to (2), (4)

d

dt
〈JU〉i = − 1

hD

∫
Vi

∇ · (NT ~F )dξ = −1
h

D∑
d=1

〈(NT ~F )d〉i+ 1
2
ed − 〈(NT ~F )d〉i− 1

2
ed (15)

〈(NT ~F )d〉i+ 1
2
ed =

1
hD−1

∫
Ad

(NT ~F )ddA, (16)

can be interpreted as a finite-volume discretization in physical space, where the control volumes
are given by the image of the cells Vi under the mapping X.

1
hD

∫
X(Vi)

Udx = 〈JU〉i (17)

1
hD

∫
X(Vi)

∇x · ~Fdx =
1
hD

∫
Vi

∇ξ · (NT ~F )dξ =
1
h

D∑
d=1

〈(NT ~F )d〉i+ 1
2
ed − 〈(NT ~F )d〉i− 1

2
ed (18)

We can use (9) to compute the face integrals, thus obtaining a fourth-order accurate discretization.

〈(NT ~F )d〉i+ 1
2
ed =

(
〈NT 〉i+ 1

2
ed〈~F 〉i+ 1

2
ed

)
d

+
h2

12

∑
d′ 6=d

( ∂

∂ξd′
(NT ) · ∂

∂ξd′
(~F )
)

d
+O(h4) (19)

An important property of finite-volume methods on mapped grids is free-stream preservation, i.e.
the divergence of a constant vector field ~F is identically zero. Thus, we need to derive quadrature
formulas for

∫
Ad
NTdAξ so that the discrete divergence of a constant vector field given by (18),

(19) is zero.
The existence of such quadratures is a consequence of Stokes’ theorem and the Poincare lemma.

The rows of the matrix N , denoted by N s, s = 1, . . . , D satisfy ∇ξ ·N s = 0. This can be seen by a
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direct calculation, or inferred indirectly from applying (18) to constant vector fields. Then by the
Poincare lemma [5], there exist functions N s

d,d′ , d 6= d′ such that

N s
d =

∑
d′ 6=d

∂N s
d,d′

∂ξd′
, N s

d,d′ = −N s
d′,d. (20)

Thus we have ∫
Ad

N s
ddAξ =

∑
±=+,−

∑
d′ 6=d

±
∫

E±
d,d′

N s
d,d′dEξ, (21)

where E±d,d′ are the (hyper)edges on the low and high sides of Ad in the d′ direction. For each edge,
the same integrals over the edge appear for the integral over each face adjacent to that edge, modulo
signs. If we approximate the integrals over edges with the same quadrature formulas wherever they
appear, then the freestream property

D∑
d=1

∑
±=+,−

±
∫

A±d

N s
ddAξ = 0

is satisfied. Furthermore, the quadrature formulas for the edge integrals can otherwise be chosen
arbitrarily; in particular, they can be chosen so that (21) approximates the integral of N s

d over the
face to any order of accuracy. We note that this is a generalization to arbitrary dimensions and
arbitrary orders of accuracy of the staggered-grid methods used to discretize electromagnetic fields
so that discrete analogues of the various vector identities are satisfied identically.

Given N s
d , d = 1, . . . , D, the family of functions N s

d,d′ , d
′ 6= d satisfying (20) is not unique. A

particularly simple choice that is a local function of X and ∇ξX is given by

N s
d,d′ =

1
D − 1

det
(

(∇ξX) (X|d′)(s|ed)
)

(22)

whereA(v|p) = A(p|v)T . We note that the expression forN s
d,d given above only involves derivatives

of X in directions tangent to Ed,d′ .
The proof that (22) satisfies (20) is a straightforward calculation. For the special case of D = 3,

the N s
d,d are given as follows.

N 1
21 =

1
2

(
X3

∂X2

∂ξ3
−X2

∂X3

∂ξ3

)
N 2

21 =
1
2

(
−X3

∂X1

∂ξ3
+X1

∂X3

∂ξ3

)
N 3

21 =
1
2

(
X2

∂X1

∂ξ3
−X1

∂X2

∂ξ3

)
N 1

31 =
1
2

(
−X3

∂X2

∂ξ2
+X2

∂X3

∂ξ2

)
N 2

31 =
1
2

(
X3

∂X1

∂ξ2
−X1

∂X3

∂ξ2

)
N 3

31 =
1
2

(
−X2

∂X1

∂ξ2
+X1

∂X2

∂ξ2

)
N 1

32 =
1
2

(
X3

∂X2

∂ξ1
−X2

∂X3

∂ξ1

)
N 2

32 =
1
2

(
−X3

∂X1

∂ξ1
+X1

∂X3

∂ξ1

)
N 3

32 =
1
2

(
X2

∂X1

∂ξ1
−X1

∂X2

∂ξ1

)
The remaining N ’s are given by the antisymmetry condition N s

d,d′ = −N s
d′,d.

We can apply this approach to solve the advection equation (10) in a mapped coordinate system.
The method for computing the fluxes is the same as in the Cartesian grid case, except that it is
necessary to compute a fourth-order accurate approximation of 〈s〉i from 〈Js〉i. We do that by
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Figure 3: Advection on mapped grids. Left, center: advection of product of trigonomietric functions
on a grid with a twist in the center. Advection velocity is a constant pointing in the (1, 1) direction,
with periodic boundary conditions. Right: same grid, velocity, and boundary conditions as on the
left, but with a piecewise-constant circular patch.

repeated applications of (8).

〈s〉i ≈ 〈Js〉i
〈 1
J

〉
i

+
h2

12
∇(Js) · ∇

( 1
J

)
〈 1
J

〉
i
≈ 1
〈J〉i

(
1 +

h2

12J2
|∇J |2

)
In Figure 3, we show the advection of a product of trigonometric functions by a constant velocity
field in a grid that has a smoothly-twisted region in the center. As before, we obtain fourth-order
accuracy as the mesh spacing becomes finer. We also show the advection of a circular patch by the
same velocity field, and on the same mesh. The limiters are effective in suppressing oscillations at
the discontinuity.

4 Ghost Cell Interpolation at Grid Boundaries

To extend the methods described above to multiblock and locally-refined meshes, we will apply
the various stencil operations by computing ghost-cell values on grids that are smooth extensions
of the original block or union of rectangles at a level (Figure 4), together with a mechanism for
obtaining single-valued fluxes at block boundaries.

To compute these ghost-cell values, we use a least-squares approach that allows us to obtain
high-order accuracy independent of the degree of smoothness of the mesh. We compute a polynomial
interpolant in the neighborhood of a ghost cell of the form

ϕ(x) ≈
∑

pd≥0;p1+···+pD≤P−1

apx
p , p = (p1, . . . , pD) , xp = xp1

1 . . . xpd
d (23)

We will assume that we know the conserved quantities in a collection of control volumes v ∈ V. In
that case,we impose the conditions

〈ϕ〉v =
∑

p≥0:|p|≤P−1

ap〈xp〉v , v ∈ V (24)
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Figure 4: Interpolation of ghost cells on smoothly-extended grid. ∗’s indicate ghost control volumes
for which values are to be interpolated, while ×’s indicate the nearby control volumes that will be
used in the least-squares calculation.

h |εh|max/|f |max p (κh)max

1/8 6.2787× 10−3 1.3640× 103

1/16 3.5566× 10−4 4.14 1.3696× 103

1/32 1.6911× 10−5 4.39 1.5594× 103

1/64 9.1544× 10−7 4.21 1.8096× 103

Table 2: Errors in a fourth-order accurate least-squares computation of ghost-cell values. The sec-
ond column shows relative max norm errors, and the fourth column shows the maximum condition
number of the least-squares calculations done using the QR algorithm from LAPack.

Since the conserved quantities are known, and we can compute the moments 〈xp〉v from the grid
geometry, this constitutes a system of linear equations for the interpolation coefficients ap. Gener-
ally, we choose the number of equations to be greater than the number of unknowns in such a way
that the resulting overdetermined system has maximal rank, so that it can be solved using least
squares. In the case where we are computing an interpolant onto a finer grid from a coarser one in
a locally-refined mesh calculation, we can impose the conservation condition as a linear constraint.
Table 2 shows the convergence and conditioning properties for a cubic polynomial least-squares
interpolation of ghost-cell values for the cubed-sphere grid.

5 Conclusions

In this paper, we have shown some of the major features of a class of higher-order methods for
locally-structured grids. Central to this approach is to systematically distinguish between cell- and
face- averages and point values, and providing appropriate quadrature and deconvolution methods
for converting one to the other. We are currently implementing these methods for coupled hyper-
bolic and elliptic systems arising in gyrokinetic models of plasmas, and for nonlinear hyperbolic
conservation laws.

8



References

[1] M. Barad and P. Colella. A fourth-order accurate local refinement method for Poisson’s equa-
tion. J. Comput. Phys., 209:1–18, 2005.

[2] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws. J. Comput.
Phys., 87(1):171–200, 1990.

[3] P. Colella and M. D. Sekora. A limiter for PPM that preserves accuracy at smooth extrema. J.
Comput. Phys., 227:7069–7076, 2008.

[4] P. Colella and P. R. Woodward. The piecewise-parabolic method (PPM) for gas-dynamical
simulations. J. Comput. Phys., 54:174–201, 1984.

[5] M. Spivak. Calculus on Manifolds. W. A. Benjamin, Inc., New York, NY, 1965.

[6] S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput.
Phys., 31:335–362, 1979.

9


