

An Architect's Point of View of the Post Moore Era

Dr. George Michelogiannakis

Research scientist Computer architecture group Lawrence Berkeley National Laboratory

Work with Dr. Dilip Vasudevan

These are not DOE's or LBNL's official views

- * Transistor density will increase by 2x every **12** months
- * Transistor density will increase by 2x every **18** months
- * Transistor density will increase by 2x every **24** months

(may have multiple answers)

Transistor density will increase by 2x every 12 months

- 回 In 1965
- Transistor density will increase by 2x every 18 months
- Transistor density will increase by 2x every 24 months

回 In 1975

Fig. 2 Number of components per Integrated function for minimum cost per component extrapolated vs time.

Dr. Moore's 1965 paper

50 years of Sem

.....

BERKELEY LAE

Peter Bright "Intel retires "tick-tock" development model, extending the life of each process", 2016

Performance

Now – 2025

Moore's Law continues through ~5nm -- beyond which diminishing returns are expected.

2016

2016-2025

End of Moore's Law 2025-2030?

Post Moore Scaling

New materials and devices introduced to enable continued scaling of electronics performance and efficiency.

Performance

2025+

+ others

An Architect's Point of View

An Architect's Job

Lego Designs Have Been Getting Larger

- * Old designs can no longer become smaller with same strength
- * Lego came up with new pieces:

- * Which ones do we use?
- ***** How does each one change the optimal design?
- * How does each piece interact with others?
- * What feedback can we provide Lego to refine each piece?

- New devices need time to show their potential
- ***** Two broad categories:
 - New designs
 - New materials
- Maybe not a single replacement for MOSFETs

Rick Lindquist "3 Steps for Constructive Disruption"

Many More

Nikonov and Young, "Benchmarking of Beyond-**CMOS Exploratory** Devices for Logic Integrated Circuits", 2015

Each dot is a moving target. We have to judge the potential

* Some of these are non-volatile

	SRAM	DRAM	eDRAM	2D NAND Flash	3D NAND Flash	PCRAM	STTRAM	2D ReRAM	3D ReRAM
Data Retention	Ν	N	Ν	Y	Y	Y	Y	Y	Y
Cell Size (F ²)	50-200	4-6	19-26	2-5	<1	4-10	8-40	4	<1
Minimum F demonstrated (nm)	14	25	22	16	64	20	28	27	24
Read Time (ns)	< 1	30	5	104	104	10-50	3-10	10-50	10-50
Write Time (ns)	< 1	50	5	10 ⁵	10 ⁵	100-300	3-10	10-50	10-50
Number of Rewrites	10 ¹⁶	10 ¹⁶	1016	10 ⁴ -10 ⁵	10 ⁴ -10 ⁵	10 ⁸ -10 ¹⁰	1015	10 ⁸ -10 ¹²	10 ⁸ -10 ¹²
Read Power	Low	Low	Low	High	High	Low	Medium	Medium	Medium
Write Power	Low	Low	Low	High	High	High	Medium	Medium	Medium
Power (other than R/W)	Leakage	Refresh	Refresh	None	None	None	None	Sneak	Sneak
Maturity									

J.S. Vetter and S. Mittal, "Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance Computing," CiSE, 17(2):73-82, 2015.

What About Memory Hierarchy?

Flash Zone

Non-volatility higher at the hierarchy

- Challenge assumption that nonvolatile storage is slow and distant
- New memories have different read, write, reliability constraints
- New memory hierarchy likely different

AGIGARAM "The Flash Zone"

Enabled by Emerging Nanotechnologies

Massive Sensing

Shulaker "Transforming Emerging Technologies into Working Systems"

Shulaker "Transforming Emerging Technologies into Working Systems"

- * Hardware that is more suited for specific kinds of computation
 - Can also have accelerators for data transfer

Overall: The Variety of Choices Is Overwhelming

- * Evaluating each option in isolation misses the big picture
 - Devices can be better designed with high-level metrics
 - Architects can figure out how to best use new technologies
 - Software experts can assess impact to programmability and compilers

* But we lack the tools to do so systematically for many technologies

How To Make An Architect's Job Easier?

Beyond Moore Architectural Simulation from Emerging Device and Gate Level analysis

- * Level 1 is the input for devices
- * Xyce: open source parallel SPICE client

Comparison Studies (PARADISE generated)

Delay comparison for a multiplier

Power comparison for a multiplier

* Synthesis using Yosys and our own extension for power estimation

PARADISE Level 2, 3 - Logic Synthesis using Standard Cell Library for Adder 8bits - 2048 bits

- ★ Gem5 with Aladdin
- With small accelerators small delay differences do not have a significant application impact due to other overhead

How To Use These Tools?

FPGAs can be heterogeneous too

Verlay step
 understands available
 FPGA hardware and
 maps IPs accordingly

End-to-End Open Source Reconfigurable DSE Methodology/Tool Flow for Beyond Moore FPGAs

D. Vasudevan et al, "CASPER — Configurable design space exploration of programmable architectures for machine learning using beyond moore devices," 2017

* Quantum Computer = Quantum PU + Control Hardware

1000 qubits, gate time 10ns, 3 ops/qubit **300 billion ops per second**

(4) Superconducting Logic

- Resistance drops to zeroTc approx 4 Kelvin
- * 100's of GigahertzImage: Deep pipelines
- * Memory is a grand challenge
- Can measure architecture impact and synergy with memory technologies

- Which device technology will dominate?
 - For what domains, and with what side effects
- How does architecture change with device technology?
- How can we best take advantage of deep 3D?
 With alternating logic and memory layers
- ***** How large or distant do we make accelerators?
- * How does the memory hierarchy change?
- * How heterogeneous do architectures need to be?

- Build an architectural simulation tool that can be used by software developers
- * What is the impact of challenging the far and expensive memory assumption?
 - Also non-volatile
- What about a heterogeneous memory hierarchy?
- ***** How can we use reconfigurable accelerators?
- ★ How to deal will reduced reliability?
 - Approximate computing may see a boost

- * It's an exciting time to be an architect
- * It's hard to predict how digital computing will look like in 20 years
- Likely more diversified by application domain and even specific algorithm
- We should focus on a grand strategy to best make use of our available options

