
LEAP: Scaling Numerical Optimization Based
Synthesis Using an Incremental Approach

Ethan Smith, Marc G. Davis
University of California, Berkeley

ethanhs@berkeley.edu,marc.davis@berkeley.edu

Jeffrey M. Larson
Argonne National Laboratory

jmlarson@anl.gov

Ed Younis, Costin Iancu
Lawrence Berkeley National Laboratory

edyounis@lbl.gov, cciancu@lbl.gov

Abstract—We present techniques for incremental synthesis of
quantum circuits using numerical optimization and search.

Due to its ability to produce short depth circuits, synthesis
provides a very valuable tool for quantum circuit optimization,
especially for Noisy Intermediate Scale Quantum devices with
short coherence time and noisy gates.

The techniques shown [1], [2] to produce shortest depth
circuits use a combination of numerical optimization (of
parameterized gate representations) and search over circuit
structures. While providing close to optimal depth, they face
scalability challenges:
● The number of parameters to optimize grows with circuit

depth to the point where optimizers can’t solve.
● The number of intermediate solutions to consider is

exponential in the number of links/qubits.
● The objective function for optimization is complex and

optimizers often get stuck in local minima.
In this paper we present the LEAP (Larger Exploration

by Approximate Prefixes) compiler to scale synthesis along
these three dimensions using an incremental approach. As
the baseline we use Qsearch [1], an optimal depth synthesis
algorithm which successfully handles circuits up to four qubits.
Qsearch optimal depth synthesis: The approach taken by
Qsearch is to frame the question of optimal gate synthesis as a
combinatorial optimization problem. Given a universal gate set
for a quantum computer, Qsearch permutes combinations of
gates (also called ”layers”) at each link placement possibility,
building on the previous best placements to form a circuit
structure. A numerical optimizer is run on the circuit structure
to produce a score. The score guides the A* search algorithm
towards the structure and parameters which minimizes the
difference between the generated circuit and the input unitary
based on a distance metric derived from the Hilbert-Schmidt
norm.

Due to scalability limitations already mentioned, Qsearch
can only feasibly synthesize up to four qubit input unitaries.
In addition, Qsearch may miss the best solution due to the
numerical optimizer missing the global optimum. These are
common limitations of synthesis algorithms based on numer-
ical optimization.

This work was supported by the Advanced Quantum Testbed program of the
Advanced Scientific Computing Research for Basic Energy Sciences program,
Office of Science of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

I. METHODS

Incremental Synthesis: Qsearch works by extending a circuit
with one CNOT layer at a time and evaluating the potential
partial solutions to lead to an optimal solution. For each partial
solution a full numerical optimization step is performed.

LEAP was inspired by experience with the behavior of
Qsearch and the structure of the problem. During the search,
Qsearch would sometimes make significant progress in score
very quickly, while other times it would slowly search a large
number of nodes and make little progress. Generally, after a
certain amount of progress, little to no backtracking occurred.
By choosing a single structure as a prefix after significant
progress is made, the search space can be greatly reduced.
The challenge is to determine a partial solution in a manner
that does not change the overall trajectory of the search.

LEAP operates very similarly to Qsearch. To start, a layer of
single qubit gates (e.g. U3s) are placed on all qubit lines. This
forms the root node and the original prefix. New layers are
added to the search tree by placing 2-qubit parameterizations
at each link. For the root node and each successive node in
the search tree, a numerical optimizer is used to find the best
parameterization to approximate the input unitary. This forms
the search tree. The search of the tree is exactly the same
as Qsearch, except previous best scores are tracked in a list.
For each node that has the new best score, we compare it
to a linear regression of previous scores. If it is a significant
improvement over the projected score, we can use the current
circuit as a prefix. However, we noticed this can lead to many
extra layers being added superfluously, so the algorithm also
checks that a minimum amount of searching has been done,
to make sure LEAP isn’t just adding and undoing work. We
then re-start the search using our new prefix as the root node,
keeping track at what depth of layers we re-fixed the prefix.
Once the score falls below the desired threshold, the search
stops and the result is returned.
Reoptimization: The end result of incremental synthesis (or
other divide-and-conquer, partitioning, etc. techniques) is that
circuit pieces are optimized in disjunction, with the potential
of missing the optimal solution. The basic observation here
is that by chopping and combining pieces of the final LEAP
compiled circuit, we can create new, unseen circuits for the
optimization process. Once a result is produced by LEAP, the
output circuit and the list of depths where prefixes were fixed is



Qsearch QFAST † LEAP with Re-optimization

ALG Qubits Ref CNOT Unitary Distance Time (s) CNOT Unitary Distance Time (s) CNOT Unitary Distance Time (s)

QFT 4 12 14 6.7 ∗ 10−16 2429.387881 24 8.0 ∗ 10−13 119.7 13 6.7 ∗ 10−16 77.9
TFIM-22 4 126 12 1.2 ∗ 10−15 2450.323824 46 1.1 ∗ 10−8 349.3 12 7.8 ∗ 10−16 41.7
TFIM-95 4 570 12 6.7 ∗ 10−16 1221.453431 41 2.5 ∗ 10−12 717.2 12 2.2 ∗ 10−16 38.2

VQE 4 91 21 6.5 ∗ 10−11 1662.4
full adder 4 N/A 18 0.0 115.3

HLF* 5 13 13 0.0 117.8
MUL 5 17 13 1.1 ∗ 1015 425.6
QFT 5 20 45 5.3 ∗ 10−13 373.9 28 5.9 ∗ 10−15 3154.1

TFIM-40 5 320 130 1.8 ∗ 10−12 1910.3 20 7.8 ∗ 10−16 646.6
TFIM-100 5 800 280 ‡ 2.6 ∗ 10−12 ‡ N/A 20 2.1 ∗ 10−15 462.7
TFIM-24 6 240 180 ‡ 1.6 ∗ 10−5 ‡ N/A 28 7.3 ∗ 10−11 106604.8
TFIM-51 6 510 278 ‡ 1.5 ∗ 10−5 ‡ N/A 31 8.9 ∗ 10−11 46609.9

Fig. 1. Summary of synthesis results for Qsearch, QFAST, and LEAP. On average, LEAP produces the same or shorter results than Qsearch and QFAST in
less time. * HLF is the Hidden Linear Function algorithm from [3]. †For 4 qubits the KAK backend was used, for 5 qubits the Qsearch backend was used
for QFAST. ‡Results from the QFAST paper [2] using the UQ backend.

passed to the re-optimizer. The re-optimizer removes segments
to create ”holes” of a size provided by the user centered on the
points where LEAP fixed the prefix of the rest of the circuit,
as this is where extra CNOTS are most often added. The re-
optimizer then uses normal Qsearch with a higher quality but
slower multi-start solver based on [4], but instead of inserting
layers at the end of the circuit, it inserts them at the start of
the hole. The search stops once a node with a score below
the threshold is found, or the search fails to find a best node
below the size of the hole. Then the next hole is formed and
re-optimized, and this process is repeated until there are no
more points where LEAP created a prefix.
Multi-start optimization: When evaluating the performance
of several optimizers for Qsearch, we wanted to find how
often the optimizers found the true minimum, as this has a
significant impact on the optimality of Qsearch based algo-
rithms. We evaluated the commonly used Google’s Ceres [5]
and an L-BFGS [6] implementation against the mulit-start
APOSMM [4] optimizer. In our test, we took a 4 qubit QFT
solution and ran the optimizers 100 times to evaluate how often
they found the true minimum. The L-BFGS optimizer found
a solution just 2% of the runs. Google’s Ceres solver found
a solution about 10% of the time. With 24 starting points,
APOSMM found a solution 99% of the time. Therefore when
using LEAP, we use Ceres because it is fast and scales well,
and a missed solution will be found during re-optimization.
During re-optimization, APOSMM is used, as it is much more
likely to find true minimums, thus strengthening the optimality
of search based algorithms.

II. EVALUATION

To evaluate LEAP, we implemented the algorithm via mod-
ification to Qsearch and benchmarked with Python 3.8.2,
using numpy 1.19.1 and in Rust 1.44.0. Software is available
at https://github.com/WolfLink/qsearch. The tests were
run on a server with a 4.7 GHz Ryzen 9 3950X with 16 cores
and 32 threads. We considered well known algorithms such
as the Variational Quantum Eigensolver (VQE), important
building blocks such as the Quantum Fourier Transform, and
physical simulation circuits such as the Transverse Field Ising

Models (TFIM). As can be seen in Fig 1, LEAP with re-
optimization is able to reduce the CNOT count by up to 48x,
or 11x on average.

III. CONCLUSION

In this paper, we describe the LEAP compiler, modifications
to the Qsearch algorithm which scale the compiler to be
capable of synthesizing 4, 5, and some 6 qubit input unitaries
and a re-optimizer which further reduces the number of 2-qubit
parameterizations needed in the synthesized circuit. Compared
to similar state of the art synthesis tools, such as Qsearch
and QFAST, LEAP with our re-optimization strategy is able
to compile 4 qubit unitaries up to 59x faster than Qsearch.
LEAP is also able to synthesize 5 and 6 qubit unitaries with
up to 14x fewer CNOTS compared to QFAST. On average,
LEAP with re-optimization is able to reduce the number of
CNOTS compared to the reference circuit by 11x. We believe
our techniques can be easily generalized or transferred to other
algorithms based on search of circuit structures.

REFERENCES

[1] M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi,
and C. Iancu, “Heuristics for quantum compiling with a
continuous gate set,” 2019.

[2] E. Younis, K. Sen, K. Yelick, and C. Iancu, “Qfast:
Quantum synthesis using a hierarchical continuous circuit
space,” 2020.

[3] S. Bravyi, D. Gosset, and R. König, “Quantum
advantage with shallow circuits,” Science, vol. 362,
no. 6412, p. 308–311, Oct 2018. [Online]. Available:
http://dx.doi.org/10.1126/science.aar3106

[4] J. Larson and S. M. Wild, “Asynchronously parallel opti-
mization solver for finding multiple minima,” Mathemat-
ical Programming Computation, vol. 10, no. 3, 2 2018.

[5] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http:
//ceres-solver.org.

[6] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited
memory algorithm for bound constrained optimization,”
SIAM J. Sci. Comput., vol. 16, no. 5, p. 1190–1208,
Sep. 1995. [Online]. Available: https://doi.org/10.1137/
0916069


