

Computation and Communication in a Post Moore's Law Era

Dr. George Michelogiannakis

Research scientist Lawrence Berkeley National Laboratory

> Adjunct professor Stanford University

- Traditional device scaling is ending
- We have to preserve computation performance scaling with a variety of emerging technologies
- Meeting future goals cannot happen without a multi-layer approach
 Need tools and methodologies
- If we succeed, communication will become the bottleneck
 We can no longer overdesign networks
- This calls for a grand strategy
- * This talk is meant to be thought-provoking: Lots of ongoing work

- * Transistor density will increase by 2x every **12** months
- * Transistor density will increase by 2x every **18** months
- * Transistor density will increase by 2x every **24** months

(may have multiple answers)

Transistor density will increase by 2x every 12 months In 1965 [1]

- Transistor density will increase by 2x every 18 months
 - Average of the two
 - Actual doubling rate around 1975
- Transistor density will increase by 2x every 24 months
 - 回 In 1975 [2]

Fig. 2 Number of components per Integrated function for minimum cost per component extrapolated vs time.

Dr. Moore's 1965 paper [1]

^[1] G. E. Moore, "Cramming More Components onto Integrated Circuits," Electronics, Vol. 38, No. 8, 1965, pp. 114-117.

^[2] G. E. Moore, "Progress In Digital Integrated Electronics," International Electron Devices Meeting, IEEE, 1975, pp. 11-13.

Technology Scaling Trends

rrrr

Figure courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, and John Shalf

<u>Computation Challenge</u>: Preserve Performance Scaling With Emerging Technologies

Energy Challenge: HPC System Trends

Summit supercomputer at ORNL

- Top performance in Linpack (top500.org results) with 122.3
 PetaFLOPS
- 13 MW > 13.9 GFLOPs / Watt

6 GPUs per node. 2 CPUs

50 GLOPs / Watt

Communication Challenge: Top 10 System Trends

Performance/Communications Trends for Top 10 (2010-2018)

Sunway TaihuLight (Nov 2017) B/F = 0.004; Summit HPC (June 2018) B/F = 0.0005 → 8X decrease

Keren Bergman, "Empowering Flexible and Scalable High Performance Architectures with Embedded Photonics", IPDPS 2018

- ★ 14 GFLOPs / Watt (Summit) → 72 pJ / FLOP
 Image: 0.36 pJ / bit
- ★ Exascale target: 50 GLOPs / Watt
 20 pJ / FLOP
 - 回 0.1 pJ / bit
- * Total communication budget
- ★ The above assume 200 bits / FLOP

Data Movement Energy:	
– Access SRAM	O(10fJ/bit)
– Access DRAM cell	O(1 pJ/bit)
– Movement to HBM/MCDRAM (few mm)	O(10 pJ/bit)
- Movement to DDR3 off-chip (few cm)	O(100 pJ/bit)

Keren Bergman, "Empowering Flexible and Scalable High Performance Architectures with Embedded Photonics", IPDPS 2018

Result: Specialization May Be Limited By IO Google's TPU as an Example

- Dedicated hardware for DNNs
 - Peak compute capacity:92 TOPS/s (8-bit precision)
 - Peak bandwidth: 34 GB/s
- Must reuse a byte 2706 times to fully exploit compute capacity
 - Operational intensity: 2.7KOPs/byte, hit rate: 99.96%, 0.003 bit/OP
- Only two operations have high operational intensity: CNN0 and CNN1
- Operational intensity of others (e.g., translate and Rankbrain which are 90% of the applications) are 1 – 1.5 orders of magnitude smaller
- LSTM0 would require 40x more bandwidth to (theoretically) allow full TPU utilization

[Google cloud]

Operational Intensity: Ops/weight byte (log scale)

[Keren Bergman]

Preserve Computational Performance Scaling

Long- and Short-Term Solutions

More Efficient Architectures and Packaging The next 10 years after exascale

Comparing CMOS Alternatives

Have to Adapt to New Devices

Enabled by Emerging Nanotechnologies

Massive Sensing

Shulaker "Transforming Emerging Technologies into Working Systems"

What About Memory Hierarchy?

Flash Zone

Non-volatility higher at the hierarchy

- Challenge assumption that nonvolatile storage is slow and distant
- New memory hierarchy likely different

Access Time **CPU Registers** 1 cycle **On-Chip L1 Cache** Higher Performance 3 to 5 cycles L2/L3 Cache Larger Capacity 30 to 100 cycles DRAM THE FLASH ZONE 10M to 100M cycles HDD Tape

AGIGARAM "The Flash Zone"

Towards Diverse Accelerators

- * Evaluating each option in isolation misses the big picture
 - Devices can be better designed with high-level metrics
 - Architects can figure out how to best use new technologies
 - Software experts can assess impact to programmability and compilers

Level 1

How To Use These Tools?

VTA Core + MESO Deep Learning

Moreau et al, "VTA: An Open Hardware-Software Stack for Deep Learning". Cornell University, 2018 Manipatruni et al, "Scalable Energy-Efficient Magnetoelectric Spin-Orbit Logic", Nature, 2019

* Quantum Computer = Quantum PU + Control Hardware

1000 qubits, gate time 10ns, 3 ops/qubit **300 billion ops per second**

(3) Superconducting Logic

- Resistance drops to zeroTc approx 4 Kelvin
- * 100's of GigahertzImage: Deep pipelines
- * Memory is a grand challenge
- Can measure architecture impact and synergy with memory technologies

Gallardo et al, "Superconductivity observation in a (CuInTe 2) 1-x (NbTe) x alloy with x=0.5"

Preserve Communication Scaling

To avoid making it the limiting factor

The Photonic Opportunity for Data Movement

Reduce Energy Consumption

Eliminate Bandwidth Taper

R. Lucas et al., "Top ten exascale research challenges," DOE ASCAC subcommittee Report, 2014

- * Even if we have a network that consumes no energy, we cannot reach a 2x improvement
 - Only 4% to 12% of total power is in the network
- * Key: use emerging photonic components to change the architecture

- * Use capabilities of photonics to change the architecture
- ★ Intra node
 - Resource disaggregation
- * System-wide
 - Bandwidth steering

Optical Switches on Nodes

Keren Bergman, "PINE: An Energy Efficient Flexibly Interconnected Photonic Data Center Architecture for Extreme Scalability", OI 2018

Aggregate Remote Resources

Keren Bergman, "PINE: An Energy Efficient Flexibly Interconnected Photonic Data Center Architecture for Extreme Scalability", OI 2018

- * Photonic switches with sufficient radix
- Efficient conversion to optics
 In package?
- * Algorithm to decide node configuration
- How changing node configuration affects network traffic, scheduling, and system management [1]

[1] D. Z. Tootaghaj et al., "Evaluating the combined impact of node architecture and cloud workload characteristics on network traffic and performance/cost,", 2015 IEEE International Symposium on Workload Characterization.

Use Optics for Efficient B/W Steering

[Min Yee (Jason) The]

Bandwidth Steered

[Min Yee (Jason) The]

Transform into vector

- * NP-hard optimally
- Respect physical limitations
- Understand implications in pathological cases
- * Solid models of underlying optics technology
 - Cost of reconfiguration

Transform matrix form into vector form

[Min Yee (Jason) The]

- * It's an exciting time to be an architect
- * It's hard to predict how digital computing will look like in 20 years
- Likely more diversified by application domain and even specific algorithm
- We should focus on a grand strategy to best make use of our available options
 - To include computation and communication

